Exercice 4

Dimensionnement et exploitation d'un réservoir à buts multiples pour la régulation des apports en eau

Groupe 1

Noms et prénoms :

Introduction

Considérez l'aménagement hydraulique à buts multiples de Lambda en Afrique de l'Ouest, conçu pour réguler les apports du fleuve Bafing-Sénégal. La retenue est prévue pour alimenter des périmètres d'irrigation et une usine hydroélectrique, contribuer au soutien d'étiage et au soutien de crue (pour les usagers en aval), à l'alimentation local en eau et à la protection contre les crues.

Données de base

Données hydrologiques

Apports en eau à la section du barrage sur le fleuve Bafing [hm³]

Années	oct	nov	dec	jan	fev	mar	avr	mai	jun	jul	aou	sep
Humide	1838	847	478	338	267	218	230	403	824	1419	1096	1159
Moyenne	864	430	243	190	159	137	183	307	413	520	757	972
Sèche	455	318	172	141	116	97	137	171	214	332	265	253

Evaporation sur la retenue :

6 mm/jour (1^{er} juin au 30 novembre)

4 mm/jour (en dehors)

Niveau d'eau moyen en aval:

153.5 m.s.m.

Données d'exploitation

- Prélèvement pour l'irrigation, pour un périmètre irrigué totale initiale de 25'000 ha: 4 m³/h/ha (décembre à mai), 1 m³/h/ha (juin à novembre)
- Prélèvement pour soutien d'étiage :
- 2 m³/s (décembre à mai)
- Prélèvement pour débit écologique : 1000 l/s (décembre à mai) 500 l/s en dehors
- Prélèvement pour eau industrielle du site $10 \text{ m}^3/\text{j}$

Données du réservoir

Courbe de stockage

Facteur Polynôme
1.87394691E+02
3,93926359E-02
-1,59149348E-05
4,69258464E-09
-8,18344516E-13
7.28123126E-17
-2.34419186E-21

- Niveau retenue normal (RN) : 250.00 m.s.m.
- Niveau minimum d'exploitation (Nm) : 226 m.s.m.

Courbe de surface inondé

A [km²] = f(N [m.s.m])	Facteur Polynôme
a0	1.29539757E+05
a1	-3.62014713E+03
a2	4.19337504E+01
a3	-2.57434881E-01
a4	8.82628895E-04
a5	-1.60137399E-06
a6	1.20134414E-09

- Cote des plus hautes eaux (PHE) : 253.00 m.s.m.
- Niveau seuil vidange de fond (hyp.): 188 m.s.m.

Niveau de la fondation :
 Déversements sur seuil libre :
 A partir de RN

Données de la centrale hydroélectrique

- Type de turbine :Rendement globale des turbinesFrancis0.81
- Nombre de turbines

 I Prix moyen d'électricité

 3 (Q1)

 0.12 EUR / <u>kWh</u>

Exercice

Question 1

Tenant compte des apports en eau estimés pour des années hydrologiques humide, moyenne et sèche, admettant un débit d'équipement de l'usine de 240 m³/s divisé par trois groupes et admettant le niveau d'eau au début de l'année à 245 m.s.m., déterminez pour <u>chaque année hydrologique</u>:

- a) Le volume de déversement sans aucun turbinage (1)
- b) Un planning de turbinage mensuel (nombre de turbines utilisées chaque mois, n = [1,2,3]), afin de le mieux possible :
 - réduire les pertes d'eau (déversements et évaporation)
 - maintenir une production d'énergie >0 pendant les mois d'étiage afin d'assurer une puissance garantie minimale en étiage (les mois d'étiage sont définis comme les mois qui ont des apports en eau < 250 hm³/par mois, qui change si l'année est humide, moyenne ou sèche)
 - obtenir un niveau d'eau à la fin de l'année proche à celui du début
- c) Le volume total d'eau déversé et évaporé (1)
- d) L'énergie totale produite pendant les mois d'étiage et la puissance (1) hydroélectrique garantie en moyenne pendant les mois d'étiage
- e) Le facteur de charge des turbines (j/année ou en %) et le revenu en EUR (1)

Discussion étendue :

- f) Discutez vos plannings (Question 1b) d'un point de vue énergétique, sécuritaire, (6) écologique, sociale et économique
- g) Quels seraient les avantages et les inconvénients d'abaisser de 10 m le niveau de la crête du déversoir libre de l'évacuateur de crues (soit le niveau RN), toute en gardant le même Nm (par rapport aux résultats de la Question 1b) ?

Nous allons maintenant considérer un horizon de planification plus étendu puisque vous êtes confronté-e-s à la situation suivante : On vient de passer une année particulièrement sèche (i-1) et le niveau d'eau au début de l'année (i) est au niveau minimum d'exploitation. Développez un planning pour l'année suivante (i), à considérer comme une année moyenne, tout en vous préparant à une autre année sèche (i+1) à la suite, c.-à-d. en visant un niveau d'eau maximal dans la retenue à la fin de l'année moyenne (i).

- h) Déterminez le planning mensuel pour cette année moyenne tout en (1)
 - réduisant les pertes d'eau (déversements et évaporation) ;
 - maintenant une production d'énergie minimale [n>0] pendant les mois d'étiage ;
- i) Comparez ce planning (Question 1h) au planning établi auparavant pour une année
 (2) moyenne (Question 1b) et discutez les différences tenant compte des cas.

(18)

Question 2

Un projet de pompage-turbinage est envisagé, soit la construction d'un bassin supérieur sur une colline surplombant le réservoir principal.

-	Niveau maximal d'exploitation (RN) du
	bassin supérieur : 525 m.s.m.

-	Niveau	minimal	: fixé	à 473	m.s.m.	(Nm)

- Débit de turbinage : 7 m³/s
- Débit de pompage : environ 2/3 du débit de turbinage
- 1 groupe pompe-turbine Francis avec un rendement globale 0.81 (en mode pompage et en mode turbinage)

Courbe de stockage du bassin supérieur

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	4.69111351E+02
a1	3.73769019E+00
a2	1.29616945E-01
a3	-2.13739797E-02
a4	9.57339860E-04
a5	-1.91433659E-05
a6	1.43825677E-07

Vous êtes confronté-e-s à la situation suivante : Le **niveau d'eau** du bassin supérieur **en début de l'année** est à 491 m.s.m., et il s'agit d'une **année humide**. Vous voulez maintenant utiliser le bassin supérieur pour **faire du pompage-turbinage saisonnier**. Cela vous permettra de stocker un éventuel excédent d'eau arrivant pendant les mois de forts apports pour le mettre à disposition plus tard, pendant les mois de plus faibles apports et d'étiage. Ainsi, il sera possible **d'irriguer une surface agricole plus importante** pour répondre à la demande croissante du domaine de l'agriculture. La surface irriguée totale peut donc être optimisée, en étendant les 25'000 ha initiaux, pour atteindre une aire maximale de :

 $A_{max} = 25'000 \text{ ha} + A_{opt avecPT}$

A_opt_avecPT, **constante durant toute l'année**, désigne la surface maximale que vous pourrez irriguer en plus en utilisant du pompage-turbinage saisonnier. Pour les prélèvements d'irrigation il faut compter 4 m³/h/ha de décembre à mai et 1 m³/h/ha de juin à novembre.

- a) Déterminez un planning de turbinage pour la centrale de la retenue principale et de (2) celle de pompage-turbinage (PT) pour le bassin supérieur
 - afin de maximiser A_opt_avecPT,
 - tout en maintenant une production d'énergie minimal [n> 0] durant l'année
 - en réduisant au minimum les déversements
 - et en respectant le niveau minimum des réservoirs à la fin de chaque mois
- b) Déterminez pour le planning établi

(1)

- la surface totale irriguée A_max
- le total de l'énergie produite pendant l'année
- et la puissance hydroélectrique garantie en moyenne toute l'année

- c) Considérez le cas exceptionnel d'une panne technique vous empêchant d'exploiter (2) le bassin supérieur. Il faudra adapter le planning pour la retenue principale en conséquence.
 - Quelle est la surface maximale que vous pourrez irriguer à l'aide de la retenue principale seulement, tout au long d'une année humide, sans pompageturbinage saisonnier?
 - Quelle est donc la surface supplémentaire A_sup qui n'est irrigable que grâce au pompage-turbinage saisonnier ? (A_sup = A_opt_avecPT A_opt_sansPT).

Discussion:

- d) Le bassin supérieur est-il utile à augmenter la surface irrigable durant l'année ? (3) Connaissez-vous d'autres modes d'opération pour une installation de pompage-turbinage dont l'utilité pour notre aménagement à buts multiples pourrait être plus évidente, comparé au P-T saisonnier étudié ?
- e) Quelles sont les plus grandes incertitudes dans la planification de la gestion de l'aménagement hydroélectrique de la retenue principale pour les prochaines décennies ?
- f) Quels sont les avantages et les inconvénients de l'outil Excel mis à disposition ? (2)

Consignes rapport

- Max. 12 pages de contenu (Sans compter page de titre, tables des matières)
- Suivre la structure des questions et sous-questions de l'énoncé dans les rapports et garder cette structure dans votre table de matières
- Pour chaque sous-question fournir un résumé des résultats / valeurs quantitatives sous forme de tableaux, le cas échéant
- Soumettre des réponses quantitatives ainsi que sous forme graphique
- Prévoir des étiquettes/légendes complètes pour tous les figures (axes, unités, ...) et essayez de combiner les diagrammes, si possible.
- Donner brièvement une justification/explication des résultats obtenus
- Donner les formules nécessaires à la compréhension des calculs effectués (par ex. pondération moyenne, facteur de charge).

Bon courage!

Exercice 4

Dimensionnement et exploitation d'un réservoir à buts multiples pour la régulation des apports en eau

Groupe 2

Noms et prénoms :

Introduction

Considérez l'aménagement hydraulique à buts multiples de Lambda en Afrique de l'Ouest, conçu pour réguler les apports du fleuve Bafing-Sénégal. La retenue est prévue pour alimenter des périmètres d'irrigation et une usine hydroélectrique, contribuer au soutien d'étiage et au soutien de crue (pour les usagers en aval), à l'alimentation local en eau et à la protection contre les crues.

Données de base

Données hydrologiques

Apports en eau à la section du barrage sur le fleuve Bafing [hm³]

Années	oct	nov	dec	jan	fev	mar	avr	mai	jun	jul	aou	sep
Humide	1838	847	478	338	267	218	230	403	824	1419	1096	1159
Moyenne	864	430	243	190	159	137	183	307	413	520	757	972
Sèche	455	318	172	141	116	97	137	171	214	332	265	253

■ Evaporation sur la retenue :

6 mm/jour (1^{er} juin au 30 novembre)

4 mm/jour (en dehors)

Niveau d'eau moyen en aval :

153.5 m.s.m.

Données d'exploitation

- Prélèvement pour l'irrigation, pour un périmètre irrigué totale initiale de 25'000 ha : 4 m³/h/ha (décembre à mai),
 1 m³/h/ha (ivin à novembre)
 - 1 m³/h/ha (juin à novembre)
- Prélèvement pour soutien d'étiage :
 2 m³/s (décembre à mai)
- Prélèvement pour débit écologique :
 1000 l/s (décembre à mai)
 500 l/s en dehors
- Prélèvement pour eau industrielle du site
 10 m³/j

Données du réservoir

Courbe de stockage

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	1.87394691E+02
a1	3,93926359E-02
a2	-1,59149348E-05
a3	4,69258464E-09
a4	-8,18344516E-13
a5	7.28123126E-17
a6	-2.34419186E-21

- Niveau retenue normal (RN):250.00 m.s.m.
- Niveau minimum d'exploitation (Nm) : 224 m.s.m.

Courbe de surface inondé

A [km²] = f(N [m.s.m])	Facteur Polynôme
a0	1.29539757E+05
a1	-3.62014713E+03
a2	4.19337504E+01
a3	-2.57434881E-01
a4	8.82628895E-04
a5	-1.60137399E-06
a6	1.20134414E-09

- Cote des plus hautes eaux (PHE) : 253.00 m.s.m.
- Niveau seuil vidange de fond (hyp.): 188 m.s.m.

- Niveau de la fondation : 170 m.s.m.
- Déversements sur seuil libre :
 A partir de RN

Données de la centrale hydroélectrique

Type de turbine :

Francis

Nombre de turbines

3 (Q1)

Rendement globale des turbines

0.81

Prix moyen d'électricité0.12 EUR / kWh

Exercice

Question 1

Tenant compte des apports en eau estimés pour des années hydrologiques humide, moyenne et sèche, admettant un débit d'équipement de l'usine de 270 m³/s divisé par trois groupes et admettant le niveau d'eau au début de l'année à 245 m.s.m., déterminez pour <u>chaque année hydrologique</u>:

a) Le volume de déversement sans aucun turbinage

(1)

b) Un planning de turbinage mensuel (nombre de turbines utilisées chaque mois,
 n = [1,2,3]), afin de le mieux possible :

- réduire les pertes d'eau (déversements et évaporation)

- maintenir une production d'énergie >0 pendant les mois d'étiage afin d'assurer une puissance garantie minimale en étiage (les mois d'étiage sont définis comme les mois qui ont des apports en eau < 250 hm³/par mois, qui change si l'année est humide, moyenne ou sèche)
- obtenir un niveau d'eau à la fin de l'année proche à celui du début
- c) Le volume total d'eau déversé et évaporé

(1)

- d) L'énergie totale produite pendant les mois d'étiage et la puissance hydroélectrique garantie en moyenne pendant les mois d'étiage
- e) Le facteur de charge des turbines (j/année ou en %) et le revenu en EUR

(1)

(1)

Discussion étendue :

- f) Discutez vos plannings (Question 1b) d'un point de vue énergétique, sécuritaire, écologique, sociale et économique
- g) Quels seraient les avantages et les inconvénients d'abaisser de 10 m le niveau de la crête du déversoir libre de l'évacuateur de crues (soit le niveau RN), toute en gardant le même Nm (par rapport aux résultats de la Question 1b) ?

(6)

Nous allons maintenant considérer un horizon de planification plus étendu puisque vous êtes confronté-e-s à la situation suivante : On vient de passer une année particulièrement sèche (i-1) et le niveau d'eau au début de l'année (i) est au niveau minimum d'exploitation. Développez un planning pour l'année suivante (i), à considérer comme une année moyenne, tout en vous préparant à une autre année sèche (i+1) à la suite, c.-à-d. en visant un niveau d'eau maximal dans la retenue à la fin de l'année moyenne (i).

- h) Déterminez le planning mensuel pour cette année moyenne tout en (1)
 - réduisant les pertes d'eau (déversements et évaporation) ;
 - maintenant une production d'énergie minimale [n>0] pendant les mois d'étiage ;
- i) Comparez ce planning (Question 1h) au planning établi auparavant pour une année
 (2) moyenne (Question 1b) et discutez les différences tenant compte des cas.

(18)

Question 2

Un projet de pompage-turbinage est envisagé, soit la construction d'un bassin supérieur sur une colline surplombant le réservoir principal.

-	Niveau maximal d'exploitation (RN) du
	bassin supérieur : 530 m.s.m.

- Niveau minimal : fixé à 473 m.s.m. (N	۱m)
---	-----

- Débit de turbinage : 7 m³/s

 Débit de pompage : environ 2/3 du débit de turbinage

- 1 groupe pompe-turbine Francis avec un rendement globale 0.81 (en mode pompage et en mode turbinage)

Courbe de stockage du bassin supérieur

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	4.69111351E+02
a1	3.73769019E+00
a2	1.29616945E-01
a3	-2.13739797E-02
a4	9.57339860E-04
a5	-1.91433659E-05
a6	1.43825677E-07

Vous êtes confronté-e-s à la situation suivante : Le **niveau d'eau** du bassin supérieur **en début de l'année** est à 490 m.s.m., et il s'agit d'une **année humide**. Vous voulez maintenant utiliser le bassin supérieur pour **faire du pompage-turbinage saisonnier**. Cela vous permettra de stocker un éventuel excédent d'eau arrivant pendant les mois de forts apports pour le mettre à disposition plus tard, pendant les mois de plus faibles apports et d'étiage. Ainsi, il sera possible **d'irriguer une surface agricole plus importante** pour répondre à la demande croissante du domaine de l'agriculture. La surface irriguée totale peut donc être optimisée, en étendant les 25'000 ha initiaux, pour atteindre une aire maximale de :

 $A_{max} = 25'000 \text{ ha} + A_{opt avecPT}$

A_opt_avecPT, **constante durant toute l'année**, désigne la surface maximale que vous pourrez irriguer en plus en utilisant du pompage-turbinage saisonnier. Pour les prélèvements d'irrigation il faut compter 4 m³/h/ha de décembre à mai et 1 m³/h/ha de juin à novembre.

- a) Déterminez un planning de turbinage pour la centrale de la retenue principale et de (2) celle de pompage-turbinage (PT) pour le bassin supérieur
 - afin de maximiser A_opt_avecPT,
 - tout en maintenant une production d'énergie minimal [n> 0] durant l'année
 - en réduisant au minimum les déversements
 - et en respectant le niveau minimum des réservoirs à la fin de chaque mois
- b) Déterminez pour le planning établi

(1)

- la surface totale irriguée A_max
- le total de l'énergie produite pendant l'année
- et la puissance hydroélectrique garantie en moyenne toute l'année

- c) Considérez le cas exceptionnel d'une panne technique vous empêchant d'exploiter (2) le bassin supérieur. Il faudra adapter le planning pour la retenue principale en conséquence.
 - Quelle est la surface maximale que vous pourrez irriguer à l'aide de la retenue principale seulement, tout au long d'une année humide, sans pompageturbinage saisonnier?
 - Quelle est donc la surface supplémentaire A_sup qui n'est irrigable que grâce au pompage-turbinage saisonnier ? (A_sup = A_opt_avecPT A_opt_sansPT).

Discussion:

- d) Le bassin supérieur est-il utile à augmenter la surface irrigable durant l'année ? (3) Connaissez-vous d'autres modes d'opération pour une installation de pompage-turbinage dont l'utilité pour notre aménagement à buts multiples pourrait être plus évidente, comparé au P-T saisonnier étudié ?
- e) Quelles sont les plus grandes incertitudes dans la planification de la gestion de l'aménagement hydroélectrique de la retenue principale pour les prochaines décennies ?
- f) Quels sont les avantages et les inconvénients de l'outil Excel mis à disposition ? (2)

Consignes rapport

- Max. 12 pages de contenu (Sans compter page de titre, tables des matières)
- Suivre la structure des questions et sous-questions de l'énoncé dans les rapports et garder cette structure dans votre table de matières
- Pour chaque sous-question fournir un résumé des résultats / valeurs quantitatives sous forme de tableaux, le cas échéant
- Soumettre des réponses quantitatives ainsi que sous forme graphique
- Prévoir des étiquettes/légendes complètes pour tous les figures (axes, unités, ...) et essayez de combiner les diagrammes, si possible.
- Donner brièvement une justification/explication des résultats obtenus
- Donner les formules nécessaires à la compréhension des calculs effectués (par ex. pondération moyenne, facteur de charge).

Bon courage!

Exercice 4

Dimensionnement et exploitation d'un réservoir à buts multiples pour la régulation des apports en eau

Groupe 3

Noms et prénoms :

Introduction

Considérez l'aménagement hydraulique à buts multiples de Lambda en Afrique de l'Ouest, conçu pour réguler les apports du fleuve Bafing-Sénégal. La retenue est prévue pour alimenter des périmètres d'irrigation et une usine hydroélectrique, contribuer au soutien d'étiage et au soutien de crue (pour les usagers en aval), à l'alimentation local en eau et à la protection contre les crues.

Données de base

Données hydrologiques

Apports en eau à la section du barrage sur le fleuve Bafing [hm³]

Années	oct	nov	dec	jan	fev	mar	avr	mai	jun	jul	aou	sep
Humide	1838	847	478	338	267	218	230	403	824	1419	1096	1159
Moyenne	864	430	243	190	159	137	183	307	413	520	757	972
Sèche	455	318	172	141	116	97	137	171	214	332	265	253

- Evaporation sur la retenue :
 - 6 mm/jour (1^{er} juin au 30 novembre)
 - 4 mm/jour (en dehors)

Niveau d'eau moyen en aval : 153.5 m.s.m.

Données d'exploitation

- Prélèvement pour l'irrigation, pour un périmètre irrigué totale initiale de 25'000 ha : 4 m³/h/ha (décembre à mai),
 - 1 m³/h/ha (juin à novembre)
- Prélèvement pour soutien d'étiage :
 2 m³/s (décembre à mai)
- Prélèvement pour débit écologique :
 1000 l/s (décembre à mai)
 500 l/s en dehors
- Prélèvement pour eau industrielle du site
 10 m³/j

Données du réservoir

Courbe de stockage

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	1.87394691E+02
a1	3,93926359E-02
a2	-1,59149348E-05
a3	4,69258464E-09
a4	-8,18344516E-13
a5	7.28123126E-17
a6	-2.34419186E-21

- Niveau retenue normal (RN):250.00 m.s.m.
- Niveau minimum d'exploitation (Nm) : 225 m.s.m.

Courbe de surface inondé

A [km²] = f(N [m.s.m])	Facteur Polynôme
a0	1.29539757E+05
a1	-3.62014713E+03
a2	4.19337504E+01
a3	-2.57434881E-01
a4	8.82628895E-04
a5	-1.60137399E-06
a6	1.20134414E-09

- Cote des plus hautes eaux (PHE) : 253.00 m.s.m.
- Niveau seuil vidange de fond (hyp.): 188 m.s.m.

Niveau de la fondation :
 Déversements sur seuil libre :
 A partir de RN

Données de la centrale hydroélectrique

- Type de turbine : Rendement globale des turbinesFrancis 0.81
- Nombre de turbines
 Prix moyen d'électricité
 3 (Q1)

 0.12 EUR / <u>kWh</u>

Exercice

Question 1

Tenant compte des apports en eau estimés pour des années hydrologiques humide, moyenne et sèche, admettant un débit d'équipement de l'usine de 255 m³/s divisé par trois groupes et admettant le niveau d'eau au début de l'année à 245 m.s.m., déterminez pour <u>chaque année hydrologique</u>:

- a) Le volume de déversement sans aucun turbinage (1)
- b) Un planning de turbinage mensuel (nombre de turbines utilisées chaque mois, n = [1,2,3]), afin de le mieux possible :
 - réduire les pertes d'eau (déversements et évaporation)
 - maintenir une production d'énergie >0 pendant les mois d'étiage afin d'assurer une puissance garantie minimale en étiage (les mois d'étiage sont définis comme les mois qui ont des apports en eau < 250 hm³/par mois, qui change si l'année est humide, moyenne ou sèche)
 - obtenir un niveau d'eau à la fin de l'année proche à celui du début
- c) Le volume total d'eau déversé et évaporé (1)
- d) L'énergie totale produite pendant les mois d'étiage et la puissance (1) hydroélectrique garantie en moyenne pendant les mois d'étiage
- e) Le facteur de charge des turbines (j/année ou en %) et le revenu en EUR (1)

Discussion étendue :

- f) Discutez vos plannings (Question 1b) d'un point de vue énergétique, sécuritaire, (6) écologique, sociale et économique
- g) Quels seraient les avantages et les inconvénients d'abaisser de 10 m le niveau de la crête du déversoir libre de l'évacuateur de crues (soit le niveau RN), toute en gardant le même Nm (par rapport aux résultats de la Question 1b) ?

Nous allons maintenant considérer un horizon de planification plus étendu puisque vous êtes confronté-e-s à la situation suivante : On vient de passer une année particulièrement sèche (i-1) et le niveau d'eau au début de l'année (i) est au niveau minimum d'exploitation. Développez un planning pour l'année suivante (i), à considérer comme une année moyenne, tout en vous préparant à une autre année sèche (i+1) à la suite, c.-à-d. en visant un niveau d'eau maximal dans la retenue à la fin de l'année moyenne (i).

- h) Déterminez le planning mensuel pour cette année moyenne tout en (1)
 - réduisant les pertes d'eau (déversements et évaporation) ;
 - maintenant une production d'énergie minimale [n>0] pendant les mois d'étiage ;
- i) Comparez ce planning (Question 1h) au planning établi auparavant pour une année
 (2) moyenne (Question 1b) et discutez les différences tenant compte des cas.

(18)

Question 2

Un projet de pompage-turbinage est envisagé, soit la construction d'un bassin supérieur sur une colline surplombant le réservoir principal.

-	Niveau maximal d'exploitation (RN) du
	bassin supérieur : 535 m.s.m.

-	Niveau	minimal	: fixé	à 473	m.s.m.	(Nm)
---	--------	---------	--------	-------	--------	------

- Débit de turbinage : 7 m³/s
- Débit de pompage : environ 2/3 du débit de turbinage
- 1 groupe pompe-turbine Francis avec un rendement globale 0.81 (en mode pompage et en mode turbinage)

Courbe de stockage du bassin supérieur

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	4.69111351E+02
a1	3.73769019E+00
a2	1.29616945E-01
a3	-2.13739797E-02
a4	9.57339860E-04
a5	-1.91433659E-05
a6	1.43825677E-07

Vous êtes confronté-e-s à la situation suivante : Le **niveau d'eau** du bassin supérieur **en début de l'année** est à 489 m.s.m., et il s'agit d'une **année humide**. Vous voulez maintenant utiliser le bassin supérieur pour **faire du pompage-turbinage saisonnier**. Cela vous permettra de stocker un éventuel excédent d'eau arrivant pendant les mois de forts apports pour le mettre à disposition plus tard, pendant les mois de plus faibles apports et d'étiage. Ainsi, il sera possible **d'irriguer une surface agricole plus importante** pour répondre à la demande croissante du domaine de l'agriculture. La surface irriguée totale peut donc être optimisée, en étendant les 25'000 ha initiaux, pour atteindre une aire maximale de :

 $A_{max} = 25'000 \text{ ha} + A_{opt avecPT}$

A_opt_avecPT, **constante durant toute l'année**, désigne la surface maximale que vous pourrez irriguer en plus en utilisant du pompage-turbinage saisonnier. Pour les prélèvements d'irrigation il faut compter 4 m³/h/ha de décembre à mai et 1 m³/h/ha de juin à novembre.

- a) Déterminez un planning de turbinage pour la centrale de la retenue principale et de (2) celle de pompage-turbinage (PT) pour le bassin supérieur
 - afin de maximiser A_opt_avecPT,
 - tout en maintenant une production d'énergie minimal [n> 0] durant l'année
 - en réduisant au minimum les déversements
 - et en respectant le niveau minimum des réservoirs à la fin de chaque mois
- b) Déterminez pour le planning établi

(1)

- la surface totale irriguée A_max
- le total de l'énergie produite pendant l'année
- et la puissance hydroélectrique garantie en moyenne toute l'année

- c) Considérez le cas exceptionnel d'une panne technique vous empêchant d'exploiter (2) le bassin supérieur. Il faudra adapter le planning pour la retenue principale en conséquence.
 - Quelle est la surface maximale que vous pourrez irriguer à l'aide de la retenue principale seulement, tout au long d'une année humide, sans pompageturbinage saisonnier?
 - Quelle est donc la surface supplémentaire A_sup qui n'est irrigable que grâce au pompage-turbinage saisonnier ? (A_sup = A_opt_avecPT A_opt_sansPT).

Discussion:

- d) Le bassin supérieur est-il utile à augmenter la surface irrigable durant l'année ? (3) Connaissez-vous d'autres modes d'opération pour une installation de pompage-turbinage dont l'utilité pour notre aménagement à buts multiples pourrait être plus évidente, comparé au P-T saisonnier étudié ?
- e) Quelles sont les plus grandes incertitudes dans la planification de la gestion de l'aménagement hydroélectrique de la retenue principale pour les prochaines décennies ?
- f) Quels sont les avantages et les inconvénients de l'outil Excel mis à disposition ? (2)

Consignes rapport

- Max. 12 pages de contenu (Sans compter page de titre, tables des matières)
- Suivre la structure des questions et sous-questions de l'énoncé dans les rapports et garder cette structure dans votre table de matières
- Pour chaque sous-question fournir un résumé des résultats / valeurs quantitatives sous forme de tableaux, le cas échéant
- Soumettre des réponses quantitatives ainsi que sous forme graphique
- Prévoir des étiquettes/légendes complètes pour tous les figures (axes, unités, ...) et essayez de combiner les diagrammes, si possible.
- Donner brièvement une justification/explication des résultats obtenus
- Donner les formules nécessaires à la compréhension des calculs effectués (par ex. pondération moyenne, facteur de charge).

Bon courage!

Exercice 4

Dimensionnement et exploitation d'un réservoir à buts multiples pour la régulation des apports en eau

Groupe 4

Noms et prénoms :

Introduction

Considérez l'aménagement hydraulique à buts multiples de Lambda en Afrique de l'Ouest, conçu pour réguler les apports du fleuve Bafing-Sénégal. La retenue est prévue pour alimenter des périmètres d'irrigation et une usine hydroélectrique, contribuer au soutien d'étiage et au soutien de crue (pour les usagers en aval), à l'alimentation local en eau et à la protection contre les crues.

Données de base

Données hydrologiques

Apports en eau à la section du barrage sur le fleuve Bafing [hm³]

Années	oct	nov	dec	jan	fev	mar	avr	mai	jun	jul	aou	sep
Humide	1838	847	478	338	267	218	230	403	824	1419	1096	1159
Moyenne	864	430	243	190	159	137	183	307	413	520	757	972
Sèche	455	318	172	141	116	97	137	171	214	332	265	253

■ Evaporation sur la retenue :

6 mm/jour (1^{er} juin au 30 novembre)

4 mm/jour (en dehors)

Niveau d'eau moyen en aval :

153.5 m.s.m.

Données d'exploitation

- Prélèvement pour l'irrigation, pour un périmètre irrigué totale initiale de 25'000 ha : 4 m³/h/ha (décembre à mai),
 1 m³/h/ha (ivin à novembre)
 - 1 m³/h/ha (juin à novembre)
- Prélèvement pour soutien d'étiage :
 2 m³/s (décembre à mai)
- Prélèvement pour débit écologique :
 1000 l/s (décembre à mai)
 500 l/s en dehors
- Prélèvement pour eau industrielle du site
 10 m³/j

Données du réservoir

Courbe de stockage

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	1.87394691E+02
a1	3,93926359E-02
a2	-1,59149348E-05
a3	4,69258464E-09
a4	-8,18344516E-13
a5	7.28123126E-17
a6	-2.34419186E-21

- Niveau retenue normal (RN):250.00 m.s.m.
- Niveau minimum d'exploitation (Nm) : 224 m.s.m.

Courbe de surface inondé

A [km²] = f(N [m.s.m])	Facteur Polynôme
a0	1.29539757E+05
a1	-3.62014713E+03
a2	4.19337504E+01
a3	-2.57434881E-01
a4	8.82628895E-04
a5	-1.60137399E-06
a6	1.20134414E-09

- Cote des plus hautes eaux (PHE) : 253.00 m.s.m.
- Niveau seuil vidange de fond (hyp.): 188 m.s.m.

Niveau de la fondation :
 Déversements sur seuil libre :
 A partir de RN

Données de la centrale hydroélectrique

- Type de turbine : Rendement globale des turbinesFrancis 0.81
- Nombre de turbines
 Prix moyen d'électricité
 3 (Q1)

 0.12 EUR / <u>kWh</u>

Exercice

Question 1

Tenant compte des apports en eau estimés pour des années hydrologiques humide, moyenne et sèche, admettant un débit d'équipement de l'usine de 255 m³/s divisé par trois groupes et admettant le niveau d'eau au début de l'année à 245 m.s.m., déterminez pour <u>chaque année hydrologique</u>:

- a) Le volume de déversement sans aucun turbinage (1)
- b) Un planning de turbinage mensuel (nombre de turbines utilisées chaque mois, n = [1,2,3]), afin de le mieux possible :
 - réduire les pertes d'eau (déversements et évaporation)
 - maintenir une production d'énergie >0 pendant les mois d'étiage afin d'assurer une puissance garantie minimale en étiage (les mois d'étiage sont définis comme les mois qui ont des apports en eau < 250 hm³/par mois, qui change si l'année est humide, moyenne ou sèche)
 - obtenir un niveau d'eau à la fin de l'année proche à celui du début
- c) Le volume total d'eau déversé et évaporé (1)
- d) L'énergie totale produite pendant les mois d'étiage et la puissance (1) hydroélectrique garantie en moyenne pendant les mois d'étiage
- e) Le facteur de charge des turbines (j/année ou en %) et le revenu en EUR (1)

Discussion étendue :

- f) Discutez vos plannings (Question 1b) d'un point de vue énergétique, sécuritaire, (6) écologique, sociale et économique
- g) Quels seraient les avantages et les inconvénients d'abaisser de 10 m le niveau de la crête du déversoir libre de l'évacuateur de crues (soit le niveau RN), toute en gardant le même Nm (par rapport aux résultats de la Question 1b) ?

Nous allons maintenant considérer un horizon de planification plus étendu puisque vous êtes confronté-e-s à la situation suivante : On vient de passer une année particulièrement sèche (i-1) et le niveau d'eau au début de l'année (i) est au niveau minimum d'exploitation. Développez un planning pour l'année suivante (i), à considérer comme une année moyenne, tout en vous préparant à une autre année sèche (i+1) à la suite, c.-à-d. en visant un niveau d'eau maximal dans la retenue à la fin de l'année moyenne (i).

- h) Déterminez le planning mensuel pour cette année moyenne tout en (1)
 - réduisant les pertes d'eau (déversements et évaporation) ;
 - maintenant une production d'énergie minimale [n>0] pendant les mois d'étiage ;
- i) Comparez ce planning (Question 1h) au planning établi auparavant pour une année
 (2) moyenne (Question 1b) et discutez les différences tenant compte des cas.

(18)

Question 2

Un projet de pompage-turbinage est envisagé, soit la construction d'un bassin supérieur sur une colline surplombant le réservoir principal.

-	Niveau maximal d'exploitation (RN) du
	bassin supérieur : 530 m.s.m.

-	Niveau minimal : fixé à 473 m.s.m. (Nm)
---	---

- Débit de turbinage : 7 m³/s
- Débit de pompage : environ 2/3 du débit de turbinage
- 1 groupe pompe-turbine Francis avec un rendement globale 0.81 (en mode pompage et en mode turbinage)

Courbe de stockage du bassin supérieur

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	4.69111351E+02
a1	3.73769019E+00
a2	1.29616945E-01
a3	-2.13739797E-02
a4	9.57339860E-04
a5	-1.91433659E-05
a6	1.43825677E-07

Vous êtes confronté-e-s à la situation suivante : Le **niveau d'eau** du bassin supérieur **en début de l'année** est à 494 m.s.m., et il s'agit d'une **année humide**. Vous voulez maintenant utiliser le bassin supérieur pour **faire du pompage-turbinage saisonnier**. Cela vous permettra de stocker un éventuel excédent d'eau arrivant pendant les mois de forts apports pour le mettre à disposition plus tard, pendant les mois de plus faibles apports et d'étiage. Ainsi, il sera possible **d'irriguer une surface agricole plus importante** pour répondre à la demande croissante du domaine de l'agriculture. La surface irriguée totale peut donc être optimisée, en étendant les 25'000 ha initiaux, pour atteindre une aire maximale de :

 $A_{max} = 25'000 \text{ ha} + A_{opt avecPT}$

A_opt_avecPT, **constante durant toute l'année**, désigne la surface maximale que vous pourrez irriguer en plus en utilisant du pompage-turbinage saisonnier. Pour les prélèvements d'irrigation il faut compter 4 m³/h/ha de décembre à mai et 1 m³/h/ha de juin à novembre.

- a) Déterminez un planning de turbinage pour la centrale de la retenue principale et de (2) celle de pompage-turbinage (PT) pour le bassin supérieur
 - afin de maximiser A_opt_avecPT,
 - tout en maintenant une production d'énergie minimal [n> 0] durant l'année
 - en réduisant au minimum les déversements
 - et en respectant le niveau minimum des réservoirs à la fin de chaque mois
- b) Déterminez pour le planning établi

(1)

- la surface totale irriguée A_max
- le total de l'énergie produite pendant l'année
- et la puissance hydroélectrique garantie en moyenne toute l'année

- c) Considérez le cas exceptionnel d'une panne technique vous empêchant d'exploiter (2) le bassin supérieur. Il faudra adapter le planning pour la retenue principale en conséquence.
 - Quelle est la surface maximale que vous pourrez irriguer à l'aide de la retenue principale seulement, tout au long d'une année humide, sans pompageturbinage saisonnier?
 - Quelle est donc la surface supplémentaire A_sup qui n'est irrigable que grâce au pompage-turbinage saisonnier ? (A_sup = A_opt_avecPT A_opt_sansPT).

Discussion:

- d) Le bassin supérieur est-il utile à augmenter la surface irrigable durant l'année ? (3) Connaissez-vous d'autres modes d'opération pour une installation de pompage-turbinage dont l'utilité pour notre aménagement à buts multiples pourrait être plus évidente, comparé au P-T saisonnier étudié ?
- e) Quelles sont les plus grandes incertitudes dans la planification de la gestion de l'aménagement hydroélectrique de la retenue principale pour les prochaines décennies ?
- f) Quels sont les avantages et les inconvénients de l'outil Excel mis à disposition ? (2)

Consignes rapport

- Max. 12 pages de contenu (Sans compter page de titre, tables des matières)
- Suivre la structure des questions et sous-questions de l'énoncé dans les rapports et garder cette structure dans votre table de matières
- Pour chaque sous-question fournir un résumé des résultats / valeurs quantitatives sous forme de tableaux, le cas échéant
- Soumettre des réponses quantitatives ainsi que sous forme graphique
- Prévoir des étiquettes/légendes complètes pour tous les figures (axes, unités, ...) et essayez de combiner les diagrammes, si possible.
- Donner brièvement une justification/explication des résultats obtenus
- Donner les formules nécessaires à la compréhension des calculs effectués (par ex. pondération moyenne, facteur de charge).

Bon courage!

Exercice 4

Dimensionnement et exploitation d'un réservoir à buts multiples pour la régulation des apports en eau

Groupe 5

Noms et prénoms :

Introduction

Considérez l'aménagement hydraulique à buts multiples de Lambda en Afrique de l'Ouest, conçu pour réguler les apports du fleuve Bafing-Sénégal. La retenue est prévue pour alimenter des périmètres d'irrigation et une usine hydroélectrique, contribuer au soutien d'étiage et au soutien de crue (pour les usagers en aval), à l'alimentation local en eau et à la protection contre les crues.

Données de base

Données hydrologiques

Apports en eau à la section du barrage sur le fleuve Bafing [hm³]

Années	oct	nov	dec	jan	fev	mar	avr	mai	jun	jul	aou	sep
Humide	1838	847	478	338	267	218	230	403	824	1419	1096	1159
Moyenne	864	430	243	190	159	137	183	307	413	520	757	972
Sèche	455	318	172	141	116	97	137	171	214	332	265	253

Evaporation sur la retenue :

6 mm/jour (1^{er} juin au 30 novembre)

4 mm/jour (en dehors)

Niveau d'eau moyen en aval:

153.5 m.s.m.

Données d'exploitation

- Prélèvement pour l'irrigation, pour un périmètre irrigué totale initiale de 25'000 ha: 4 m³/h/ha (décembre à mai), 1 m³/h/ha (juin à novembre)
- Prélèvement pour soutien d'étiage :
- 2 m³/s (décembre à mai)
- Prélèvement pour débit écologique : 1000 l/s (décembre à mai) 500 l/s en dehors
- Prélèvement pour eau industrielle du site $10 \text{ m}^3/\text{j}$

Données du réservoir

Courbe de stockage

Facteur Polynôme
1.87394691E+02
3,93926359E-02
-1,59149348E-05
4,69258464E-09
-8,18344516E-13
7.28123126E-17
-2.34419186E-21

- Niveau retenue normal (RN) : 250.00 m.s.m.
- Niveau minimum d'exploitation (Nm) : 226 m.s.m.

Courbe de surface inondé

A [km²] = f(N [m.s.m])	Facteur Polynôme
a0	1.29539757E+05
a1	-3.62014713E+03
a2	4.19337504E+01
a3	-2.57434881E-01
a4	8.82628895E-04
a5	-1.60137399E-06
a6	1.20134414E-09

- Cote des plus hautes eaux (PHE) : 253.00 m.s.m.
- Niveau seuil vidange de fond (hyp.): 188 m.s.m.

Niveau de la fondation :
 Déversements sur seuil libre :
 A partir de RN

Données de la centrale hydroélectrique

- Type de turbine : Rendement globale des turbinesFrancis 0.81
- Nombre de turbines
 Prix moyen d'électricité
 3 (Q1)

 0.12 EUR / <u>kWh</u>

Exercice

Question 1

Tenant compte des apports en eau estimés pour des années hydrologiques humide, moyenne et sèche, admettant un débit d'équipement de l'usine de 255 m³/s divisé par trois groupes et admettant le niveau d'eau au début de l'année à 245 m.s.m., déterminez pour <u>chaque année hydrologique</u>:

- a) Le volume de déversement sans aucun turbinage (1)
- b) Un planning de turbinage mensuel (nombre de turbines utilisées chaque mois, n = [1,2,3]), afin de le mieux possible :
 - réduire les pertes d'eau (déversements et évaporation)
 - maintenir une production d'énergie >0 pendant les mois d'étiage afin d'assurer une puissance garantie minimale en étiage (les mois d'étiage sont définis comme les mois qui ont des apports en eau < 250 hm³/par mois, qui change si l'année est humide, moyenne ou sèche)
 - obtenir un niveau d'eau à la fin de l'année proche à celui du début
- c) Le volume total d'eau déversé et évaporé (1)
- d) L'énergie totale produite pendant les mois d'étiage et la puissance (1) hydroélectrique garantie en moyenne pendant les mois d'étiage
- e) Le facteur de charge des turbines (j/année ou en %) et le revenu en EUR (1)

Discussion étendue :

- f) Discutez vos plannings (Question 1b) d'un point de vue énergétique, sécuritaire, (6) écologique, sociale et économique
- g) Quels seraient les avantages et les inconvénients d'abaisser de 10 m le niveau de la crête du déversoir libre de l'évacuateur de crues (soit le niveau RN), toute en gardant le même Nm (par rapport aux résultats de la Question 1b) ?

Nous allons maintenant considérer un horizon de planification plus étendu puisque vous êtes confronté-e-s à la situation suivante : On vient de passer une année particulièrement sèche (i-1) et le niveau d'eau au début de l'année (i) est au niveau minimum d'exploitation. Développez un planning pour l'année suivante (i), à considérer comme une année moyenne, tout en vous préparant à une autre année sèche (i+1) à la suite, c.-à-d. en visant un niveau d'eau maximal dans la retenue à la fin de l'année moyenne (i).

- h) Déterminez le planning mensuel pour cette année moyenne tout en (1)
 - réduisant les pertes d'eau (déversements et évaporation) ;
 - maintenant une production d'énergie minimale [n>0] pendant les mois d'étiage ;
- i) Comparez ce planning (Question 1h) au planning établi auparavant pour une année
 (2) moyenne (Question 1b) et discutez les différences tenant compte des cas.

(18)

Question 2

Un projet de pompage-turbinage est envisagé, soit la construction d'un bassin supérieur sur une colline surplombant le réservoir principal.

-	Niveau maximal d'exploitation (RN) du
	bassin supérieur : 525 m.s.m.

-	Niveau minimal	: fixé à 473	m.s.m. (Nm)
---	----------------	--------------	-------------

- Débit de turbinage : 7 m³/s
- Débit de pompage : environ 2/3 du débit de turbinage
- 1 groupe pompe-turbine Francis avec un rendement globale 0.81 (en mode pompage et en mode turbinage)

Courbe de stockage du bassin supérieur

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	4.69111351E+02
a1	3.73769019E+00
a2	1.29616945E-01
a3	-2.13739797E-02
a4	9.57339860E-04
a5	-1.91433659E-05
a6	1.43825677E-07

Vous êtes confronté-e-s à la situation suivante : Le **niveau d'eau** du bassin supérieur **en début de l'année** est à 493 m.s.m., et il s'agit d'une **année humide**. Vous voulez maintenant utiliser le bassin supérieur pour **faire du pompage-turbinage saisonnier**. Cela vous permettra de stocker un éventuel excédent d'eau arrivant pendant les mois de forts apports pour le mettre à disposition plus tard, pendant les mois de plus faibles apports et d'étiage. Ainsi, il sera possible **d'irriguer une surface agricole plus importante** pour répondre à la demande croissante du domaine de l'agriculture. La surface irriguée totale peut donc être optimisée, en étendant les 25'000 ha initiaux, pour atteindre une aire maximale de :

 $A_{max} = 25'000 \text{ ha} + A_{opt avecPT}$

A_opt_avecPT, **constante durant toute l'année**, désigne la surface maximale que vous pourrez irriguer en plus en utilisant du pompage-turbinage saisonnier. Pour les prélèvements d'irrigation il faut compter 4 m³/h/ha de décembre à mai et 1 m³/h/ha de juin à novembre.

- a) Déterminez un planning de turbinage pour la centrale de la retenue principale et de (2) celle de pompage-turbinage (PT) pour le bassin supérieur
 - afin de maximiser A_opt_avecPT,
 - tout en maintenant une production d'énergie minimal [n> 0] durant l'année
 - en réduisant au minimum les déversements
 - et en respectant le niveau minimum des réservoirs à la fin de chaque mois
- b) Déterminez pour le planning établi

(1)

- la surface totale irriguée A_max
- le total de l'énergie produite pendant l'année
- et la puissance hydroélectrique garantie en moyenne toute l'année

- c) Considérez le cas exceptionnel d'une panne technique vous empêchant d'exploiter (2) le bassin supérieur. Il faudra adapter le planning pour la retenue principale en conséquence.
 - Quelle est la surface maximale que vous pourrez irriguer à l'aide de la retenue principale seulement, tout au long d'une année humide, sans pompageturbinage saisonnier?
 - Quelle est donc la surface supplémentaire A_sup qui n'est irrigable que grâce au pompage-turbinage saisonnier ? (A_sup = A_opt_avecPT A_opt_sansPT).

Discussion:

- d) Le bassin supérieur est-il utile à augmenter la surface irrigable durant l'année ? (3) Connaissez-vous d'autres modes d'opération pour une installation de pompage-turbinage dont l'utilité pour notre aménagement à buts multiples pourrait être plus évidente, comparé au P-T saisonnier étudié ?
- e) Quelles sont les plus grandes incertitudes dans la planification de la gestion de l'aménagement hydroélectrique de la retenue principale pour les prochaines décennies ?
- f) Quels sont les avantages et les inconvénients de l'outil Excel mis à disposition ? (2)

Consignes rapport

- Max. 12 pages de contenu (Sans compter page de titre, tables des matières)
- Suivre la structure des questions et sous-questions de l'énoncé dans les rapports et garder cette structure dans votre table de matières
- Pour chaque sous-question fournir un résumé des résultats / valeurs quantitatives sous forme de tableaux, le cas échéant
- Soumettre des réponses quantitatives ainsi que sous forme graphique
- Prévoir des étiquettes/légendes complètes pour tous les figures (axes, unités, ...) et essayez de combiner les diagrammes, si possible.
- Donner brièvement une justification/explication des résultats obtenus
- Donner les formules nécessaires à la compréhension des calculs effectués (par ex. pondération moyenne, facteur de charge).

Bon courage!

Exercice 4

Dimensionnement et exploitation d'un réservoir à buts multiples pour la régulation des apports en eau

Groupe 6

Noms et prénoms :

Introduction

Considérez l'aménagement hydraulique à buts multiples de Lambda en Afrique de l'Ouest, conçu pour réguler les apports du fleuve Bafing-Sénégal. La retenue est prévue pour alimenter des périmètres d'irrigation et une usine hydroélectrique, contribuer au soutien d'étiage et au soutien de crue (pour les usagers en aval), à l'alimentation local en eau et à la protection contre les crues.

Données de base

Données hydrologiques

Apports en eau à la section du barrage sur le fleuve Bafing [hm³]

Années	oct	nov	dec	jan	fev	mar	avr	mai	jun	jul	aou	sep
Humide	1838	847	478	338	267	218	230	403	824	1419	1096	1159
Moyenne	864	430	243	190	159	137	183	307	413	520	757	972
Sèche	455	318	172	141	116	97	137	171	214	332	265	253

- Evaporation sur la retenue :
 - 6 mm/jour (1^{er} juin au 30 novembre)
 - 4 mm/jour (en dehors)

Niveau d'eau moyen en aval : 153.5 m.s.m.

Données d'exploitation

- Prélèvement pour l'irrigation, pour un périmètre irrigué totale initiale de 25'000 ha : 4 m³/h/ha (décembre à mai),
 1 m³/h/ha (ivin à novembre)
 - 1 m³/h/ha (juin à novembre)
- Prélèvement pour soutien d'étiage :
 2 m³/s (décembre à mai)
- Prélèvement pour débit écologique :
 1000 l/s (décembre à mai)
 500 l/s en dehors
- Prélèvement pour eau industrielle du site
 10 m³/j

Données du réservoir

Courbe de stockage

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	1.87394691E+02
a1	3,93926359E-02
a2	-1,59149348E-05
a3	4,69258464E-09
a4	-8,18344516E-13
a5	7.28123126E-17
a6	-2.34419186E-21

- Niveau retenue normal (RN):250.00 m.s.m.
- Niveau minimum d'exploitation (Nm) : 228 m.s.m.

Courbe de surface inondé

A [km ²] = f(N [m.s.m])	Facteur Polynôme
a0	1.29539757E+05
a1	-3.62014713E+03
a2	4.19337504E+01
a3	-2.57434881E-01
a4	8.82628895E-04
a5	-1.60137399E-06
a6	1.20134414E-09

- Cote des plus hautes eaux (PHE) : 253.00 m.s.m.
- Niveau seuil vidange de fond (hyp.):188 m.s.m.

Niveau de la fondation :
 Déversements sur seuil libre :
 A partir de RN

Données de la centrale hydroélectrique

- Type de turbine : Rendement globale des turbinesFrancis 0.81
- Nombre de turbines
 Prix moyen d'électricité
 3 (Q1)

 0.12 EUR / <u>kWh</u>

Exercice

Question 1

Tenant compte des apports en eau estimés pour des années hydrologiques humide, moyenne et sèche, admettant un débit d'équipement de l'usine de 255 m³/s divisé par trois groupes et admettant le niveau d'eau au début de l'année à 245 m.s.m., déterminez pour <u>chaque année hydrologique</u>:

- a) Le volume de déversement sans aucun turbinage (1)
- b) Un planning de turbinage mensuel (nombre de turbines utilisées chaque mois, n = [1,2,3]), afin de le mieux possible :
 - réduire les pertes d'eau (déversements et évaporation)
 - maintenir une production d'énergie >0 pendant les mois d'étiage afin d'assurer une puissance garantie minimale en étiage (les mois d'étiage sont définis comme les mois qui ont des apports en eau < 250 hm³/par mois, qui change si l'année est humide, moyenne ou sèche)
 - obtenir un niveau d'eau à la fin de l'année proche à celui du début
- c) Le volume total d'eau déversé et évaporé (1)
- d) L'énergie totale produite pendant les mois d'étiage et la puissance (1) hydroélectrique garantie en moyenne pendant les mois d'étiage
- e) Le facteur de charge des turbines (j/année ou en %) et le revenu en EUR (1)

Discussion étendue :

- f) Discutez vos plannings (Question 1b) d'un point de vue énergétique, sécuritaire, (6) écologique, sociale et économique
- g) Quels seraient les avantages et les inconvénients d'abaisser de 10 m le niveau de la crête du déversoir libre de l'évacuateur de crues (soit le niveau RN), toute en gardant le même Nm (par rapport aux résultats de la Question 1b) ?

Nous allons maintenant considérer un horizon de planification plus étendu puisque vous êtes confronté-e-s à la situation suivante : On vient de passer une année particulièrement sèche (i-1) et le niveau d'eau au début de l'année (i) est au niveau minimum d'exploitation. Développez un planning pour l'année suivante (i), à considérer comme une année moyenne, tout en vous préparant à une autre année sèche (i+1) à la suite, c.-à-d. en visant un niveau d'eau maximal dans la retenue à la fin de l'année moyenne (i).

- h) Déterminez le planning mensuel pour cette année moyenne tout en (1)
 - réduisant les pertes d'eau (déversements et évaporation) ;
 - maintenant une production d'énergie minimale [n>0] pendant les mois d'étiage ;
- i) Comparez ce planning (Question 1h) au planning établi auparavant pour une année
 (2) moyenne (Question 1b) et discutez les différences tenant compte des cas.

(18)

Question 2

Un projet de pompage-turbinage est envisagé, soit la construction d'un bassin supérieur sur une colline surplombant le réservoir principal.

-	Niveau maximal d'exploitation (RN) du
	bassin supérieur : 530 m.s.m.

-	Niveau	minimal	: fixé	à 473	m.s.m.	(Nm)
---	--------	---------	--------	-------	--------	------

- Débit de turbinage : 7 m³/s

 Débit de pompage : environ 2/3 du débit de turbinage

- 1 groupe pompe-turbine Francis avec un rendement globale 0.81 (en mode pompage et en mode turbinage)

Courbe de stockage du bassin supérieur

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	4.69111351E+02
a1	3.73769019E+00
a2	1.29616945E-01
a3	-2.13739797E-02
a4	9.57339860E-04
a5	-1.91433659E-05
a6	1.43825677E-07

Vous êtes confronté-e-s à la situation suivante : Le **niveau d'eau** du bassin supérieur **en début de l'année** est à 492 m.s.m., et il s'agit d'une **année humide**. Vous voulez maintenant utiliser le bassin supérieur pour **faire du pompage-turbinage saisonnier**. Cela vous permettra de stocker un éventuel excédent d'eau arrivant pendant les mois de forts apports pour le mettre à disposition plus tard, pendant les mois de plus faibles apports et d'étiage. Ainsi, il sera possible **d'irriguer une surface agricole plus importante** pour répondre à la demande croissante du domaine de l'agriculture. La surface irriguée totale peut donc être optimisée, en étendant les 25'000 ha initiaux, pour atteindre une aire maximale de :

 $A_{max} = 25'000 \text{ ha} + A_{opt avecPT}$

A_opt_avecPT, **constante durant toute l'année**, désigne la surface maximale que vous pourrez irriguer en plus en utilisant du pompage-turbinage saisonnier. Pour les prélèvements d'irrigation il faut compter 4 m³/h/ha de décembre à mai et 1 m³/h/ha de juin à novembre.

- a) Déterminez un planning de turbinage pour la centrale de la retenue principale et de (2) celle de pompage-turbinage (PT) pour le bassin supérieur
 - afin de maximiser A_opt_avecPT,
 - tout en maintenant une production d'énergie minimal [n> 0] durant l'année
 - en réduisant au minimum les déversements
 - et en respectant le niveau minimum des réservoirs à la fin de chaque mois
- b) Déterminez pour le planning établi

(1)

- la surface totale irriguée A_max
- le total de l'énergie produite pendant l'année
- et la puissance hydroélectrique garantie en moyenne toute l'année

- c) Considérez le cas exceptionnel d'une panne technique vous empêchant d'exploiter (2) le bassin supérieur. Il faudra adapter le planning pour la retenue principale en conséquence.
 - Quelle est la surface maximale que vous pourrez irriguer à l'aide de la retenue principale seulement, tout au long d'une année humide, sans pompageturbinage saisonnier?
 - Quelle est donc la surface supplémentaire A_sup qui n'est irrigable que grâce au pompage-turbinage saisonnier ? (A_sup = A_opt_avecPT A_opt_sansPT).

Discussion:

- d) Le bassin supérieur est-il utile à augmenter la surface irrigable durant l'année ? (3) Connaissez-vous d'autres modes d'opération pour une installation de pompage-turbinage dont l'utilité pour notre aménagement à buts multiples pourrait être plus évidente, comparé au P-T saisonnier étudié ?
- e) Quelles sont les plus grandes incertitudes dans la planification de la gestion de l'aménagement hydroélectrique de la retenue principale pour les prochaines décennies ?
- f) Quels sont les avantages et les inconvénients de l'outil Excel mis à disposition ? (2)

Consignes rapport

- Max. 12 pages de contenu (Sans compter page de titre, tables des matières)
- Suivre la structure des questions et sous-questions de l'énoncé dans les rapports et garder cette structure dans votre table de matières
- Pour chaque sous-question fournir un résumé des résultats / valeurs quantitatives sous forme de tableaux, le cas échéant
- Soumettre des réponses quantitatives ainsi que sous forme graphique
- Prévoir des étiquettes/légendes complètes pour tous les figures (axes, unités, ...) et essayez de combiner les diagrammes, si possible.
- Donner brièvement une justification/explication des résultats obtenus
- Donner les formules nécessaires à la compréhension des calculs effectués (par ex. pondération moyenne, facteur de charge).

Bon courage!

Exercice 4

Dimensionnement et exploitation d'un réservoir à buts multiples pour la régulation des apports en eau

Groupe 7

Noms et prénoms :

Introduction

Considérez l'aménagement hydraulique à buts multiples de Lambda en Afrique de l'Ouest, conçu pour réguler les apports du fleuve Bafing-Sénégal. La retenue est prévue pour alimenter des périmètres d'irrigation et une usine hydroélectrique, contribuer au soutien d'étiage et au soutien de crue (pour les usagers en aval), à l'alimentation local en eau et à la protection contre les crues.

Données de base

Données hydrologiques

Apports en eau à la section du barrage sur le fleuve Bafing [hm³]

Années	oct	nov	dec	jan	fev	mar	avr	mai	jun	jul	aou	sep
Humide	1838	847	478	338	267	218	230	403	824	1419	1096	1159
Moyenne	864	430	243	190	159	137	183	307	413	520	757	972
Sèche	455	318	172	141	116	97	137	171	214	332	265	253

- Evaporation sur la retenue :
 - 6 mm/jour (1^{er} juin au 30 novembre)
 - 4 mm/jour (en dehors)

Niveau d'eau moyen en aval : 153.5 m.s.m.

Données d'exploitation

- Prélèvement pour l'irrigation, pour un périmètre irrigué totale initiale de 25'000 ha : 4 m³/h/ha (décembre à mai),
 1 m³/h/ha (ivin à novembre)
 - 1 m³/h/ha (juin à novembre)
- Prélèvement pour soutien d'étiage :
 2 m³/s (décembre à mai)
- Prélèvement pour débit écologique :
 1000 l/s (décembre à mai)
 500 l/s en dehors
- Prélèvement pour eau industrielle du site
 10 m³/j

Données du réservoir

Courbe de stockage

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	1.87394691E+02
a1	3,93926359E-02
a2	-1,59149348E-05
a3	4,69258464E-09
a4	-8,18344516E-13
a5	7.28123126E-17
a6	-2.34419186E-21

- Niveau retenue normal (RN):250.00 m.s.m.
- Niveau minimum d'exploitation (Nm) : 228 m.s.m.

Courbe de surface inondé

A [km ²] = f(N [m.s.m])	Facteur Polynôme
a0	1.29539757E+05
a1	-3.62014713E+03
a2	4.19337504E+01
a3	-2.57434881E-01
a4	8.82628895E-04
a5	-1.60137399E-06
a6	1.20134414E-09

- Cote des plus hautes eaux (PHE) : 253.00 m.s.m.
- Niveau seuil vidange de fond (hyp.):188 m.s.m.

Niveau de la fondation :
 Déversements sur seuil libre :
 A partir de RN

Données de la centrale hydroélectrique

- Type de turbine : Rendement globale des turbinesFrancis 0.81
- Nombre de turbines
 Prix moyen d'électricité
 3 (Q1)

 0.12 EUR / <u>kWh</u>

Exercice

Question 1

Tenant compte des apports en eau estimés pour des années hydrologiques humide, moyenne et sèche, admettant un débit d'équipement de l'usine de 255 m³/s divisé par trois groupes et admettant le niveau d'eau au début de l'année à 245 m.s.m., déterminez pour <u>chaque année hydrologique</u>:

- a) Le volume de déversement sans aucun turbinage (1)
- b) Un planning de turbinage mensuel (nombre de turbines utilisées chaque mois, n = [1,2,3]), afin de le mieux possible :
 - réduire les pertes d'eau (déversements et évaporation)
 - maintenir une production d'énergie >0 pendant les mois d'étiage afin d'assurer une puissance garantie minimale en étiage (les mois d'étiage sont définis comme les mois qui ont des apports en eau < 250 hm³/par mois, qui change si l'année est humide, moyenne ou sèche)
 - obtenir un niveau d'eau à la fin de l'année proche à celui du début
- c) Le volume total d'eau déversé et évaporé (1)
- d) L'énergie totale produite pendant les mois d'étiage et la puissance (1) hydroélectrique garantie en moyenne pendant les mois d'étiage
- e) Le facteur de charge des turbines (j/année ou en %) et le revenu en EUR (1)

Discussion étendue :

- f) Discutez vos plannings (Question 1b) d'un point de vue énergétique, sécuritaire, (6) écologique, sociale et économique
- g) Quels seraient les avantages et les inconvénients d'abaisser de 10 m le niveau de la crête du déversoir libre de l'évacuateur de crues (soit le niveau RN), toute en gardant le même Nm (par rapport aux résultats de la Question 1b) ?

Nous allons maintenant considérer un horizon de planification plus étendu puisque vous êtes confronté-e-s à la situation suivante : On vient de passer une année particulièrement sèche (i-1) et le niveau d'eau au début de l'année (i) est au niveau minimum d'exploitation. Développez un planning pour l'année suivante (i), à considérer comme une année moyenne, tout en vous préparant à une autre année sèche (i+1) à la suite, c.-à-d. en visant un niveau d'eau maximal dans la retenue à la fin de l'année moyenne (i).

- h) Déterminez le planning mensuel pour cette année moyenne tout en (1)
 - réduisant les pertes d'eau (déversements et évaporation) ;
 - maintenant une production d'énergie minimale [n>0] pendant les mois d'étiage ;
- i) Comparez ce planning (Question 1h) au planning établi auparavant pour une année
 (2) moyenne (Question 1b) et discutez les différences tenant compte des cas.

(18)

Question 2

Un projet de pompage-turbinage est envisagé, soit la construction d'un bassin supérieur sur une colline surplombant le réservoir principal.

-	Niveau maximal d'exploitation (RN) du
	bassin supérieur : 535 m.s.m.

-	Niveau minimal : fixé à 473 m.s.m. (Nm)

- Débit de turbinage : 7 m³/s
- Débit de pompage : environ 2/3 du débit de turbinage
- 1 groupe pompe-turbine Francis avec un rendement globale 0.81 (en mode pompage et en mode turbinage)

Courbe de stockage du bassin supérieur

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	4.69111351E+02
a1	3.73769019E+00
a2	1.29616945E-01
a3	-2.13739797E-02
a4	9.57339860E-04
a5	-1.91433659E-05
a6	1.43825677E-07

Vous êtes confronté-e-s à la situation suivante : Le **niveau d'eau** du bassin supérieur **en début de l'année** est à 497 m.s.m., et il s'agit d'une **année humide**. Vous voulez maintenant utiliser le bassin supérieur pour **faire du pompage-turbinage saisonnier**. Cela vous permettra de stocker un éventuel excédent d'eau arrivant pendant les mois de forts apports pour le mettre à disposition plus tard, pendant les mois de plus faibles apports et d'étiage. Ainsi, il sera possible **d'irriguer une surface agricole plus importante** pour répondre à la demande croissante du domaine de l'agriculture. La surface irriguée totale peut donc être optimisée, en étendant les 25'000 ha initiaux, pour atteindre une aire maximale de :

 $A_{max} = 25'000 \text{ ha} + A_{opt avecPT}$

A_opt_avecPT, **constante durant toute l'année**, désigne la surface maximale que vous pourrez irriguer en plus en utilisant du pompage-turbinage saisonnier. Pour les prélèvements d'irrigation il faut compter 4 m³/h/ha de décembre à mai et 1 m³/h/ha de juin à novembre.

- a) Déterminez un planning de turbinage pour la centrale de la retenue principale et de (2) celle de pompage-turbinage (PT) pour le bassin supérieur
 - afin de maximiser A_opt_avecPT,
 - tout en maintenant une production d'énergie minimal [n> 0] durant l'année
 - en réduisant au minimum les déversements
 - et en respectant le niveau minimum des réservoirs à la fin de chaque mois
- b) Déterminez pour le planning établi

(1)

- la surface totale irriguée A_max
- le total de l'énergie produite pendant l'année
- et la puissance hydroélectrique garantie en moyenne toute l'année

- c) Considérez le cas exceptionnel d'une panne technique vous empêchant d'exploiter (2) le bassin supérieur. Il faudra adapter le planning pour la retenue principale en conséquence.
 - Quelle est la surface maximale que vous pourrez irriguer à l'aide de la retenue principale seulement, tout au long d'une année humide, sans pompageturbinage saisonnier?
 - Quelle est donc la surface supplémentaire A_sup qui n'est irrigable que grâce au pompage-turbinage saisonnier ? (A_sup = A_opt_avecPT A_opt_sansPT).

Discussion:

- d) Le bassin supérieur est-il utile à augmenter la surface irrigable durant l'année ? (3) Connaissez-vous d'autres modes d'opération pour une installation de pompage-turbinage dont l'utilité pour notre aménagement à buts multiples pourrait être plus évidente, comparé au P-T saisonnier étudié ?
- e) Quelles sont les plus grandes incertitudes dans la planification de la gestion de l'aménagement hydroélectrique de la retenue principale pour les prochaines décennies ?
- f) Quels sont les avantages et les inconvénients de l'outil Excel mis à disposition ? (2)

Consignes rapport

- Max. 12 pages de contenu (Sans compter page de titre, tables des matières)
- Suivre la structure des questions et sous-questions de l'énoncé dans les rapports et garder cette structure dans votre table de matières
- Pour chaque sous-question fournir un résumé des résultats / valeurs quantitatives sous forme de tableaux, le cas échéant
- Soumettre des réponses quantitatives ainsi que sous forme graphique
- Prévoir des étiquettes/légendes complètes pour tous les figures (axes, unités, ...) et essayez de combiner les diagrammes, si possible.
- Donner brièvement une justification/explication des résultats obtenus
- Donner les formules nécessaires à la compréhension des calculs effectués (par ex. pondération moyenne, facteur de charge).

Bon courage!

Exercice 4

Dimensionnement et exploitation d'un réservoir à buts multiples pour la régulation des apports en eau

Groupe 8

Noms et prénoms :

Introduction

Considérez l'aménagement hydraulique à buts multiples de Lambda en Afrique de l'Ouest, conçu pour réguler les apports du fleuve Bafing-Sénégal. La retenue est prévue pour alimenter des périmètres d'irrigation et une usine hydroélectrique, contribuer au soutien d'étiage et au soutien de crue (pour les usagers en aval), à l'alimentation local en eau et à la protection contre les crues.

Données de base

Données hydrologiques

Apports en eau à la section du barrage sur le fleuve Bafing [hm³]

Années	oct	nov	dec	jan	fev	mar	avr	mai	jun	jul	aou	sep
Humide	1838	847	478	338	267	218	230	403	824	1419	1096	1159
Moyenne	864	430	243	190	159	137	183	307	413	520	757	972
Sèche	455	318	172	141	116	97	137	171	214	332	265	253

Evaporation sur la retenue :

6 mm/jour (1^{er} juin au 30 novembre)

4 mm/jour (en dehors)

Niveau d'eau moyen en aval:

153.5 m.s.m.

Données d'exploitation

- Prélèvement pour l'irrigation, pour un périmètre irrigué totale initiale de 25'000 ha: 4 m³/h/ha (décembre à mai), 1 m³/h/ha (juin à novembre)
- Prélèvement pour soutien d'étiage :
- 2 m³/s (décembre à mai)
- Prélèvement pour débit écologique : 1000 l/s (décembre à mai) 500 l/s en dehors
- Prélèvement pour eau industrielle du site $10 \text{ m}^3/\text{j}$

Données du réservoir

Courbe de stockage

Facteur Polynôme
1.87394691E+02
3,93926359E-02
-1,59149348E-05
4,69258464E-09
-8,18344516E-13
7.28123126E-17
-2.34419186E-21

- Niveau retenue normal (RN) : 250.00 m.s.m.
- Niveau minimum d'exploitation (Nm) : 226 m.s.m.

Courbe de surface inondé

A [km²] = f(N [m.s.m])	Facteur Polynôme
a0	1.29539757E+05
a1	-3.62014713E+03
a2	4.19337504E+01
a3	-2.57434881E-01
a4	8.82628895E-04
a5	-1.60137399E-06
a6	1.20134414E-09

- Cote des plus hautes eaux (PHE) : 253.00 m.s.m.
- Niveau seuil vidange de fond (hyp.): 188 m.s.m.

Niveau de la fondation :
 Déversements sur seuil libre :
 A partir de RN

Données de la centrale hydroélectrique

- Type de turbine :Rendement globale des turbinesFrancis0.81
- Nombre de turbines

 I Prix moyen d'électricité

 3 (Q1)

 0.12 EUR / <u>kWh</u>

Exercice

Question 1

Tenant compte des apports en eau estimés pour des années hydrologiques humide, moyenne et sèche, admettant un débit d'équipement de l'usine de 240 m³/s divisé par trois groupes et admettant le niveau d'eau au début de l'année à 245 m.s.m., déterminez pour <u>chaque année hydrologique</u>:

- a) Le volume de déversement sans aucun turbinage (1)
- b) Un planning de turbinage mensuel (nombre de turbines utilisées chaque mois, n = [1,2,3]), afin de le mieux possible :
 - réduire les pertes d'eau (déversements et évaporation)
 - maintenir une production d'énergie >0 pendant les mois d'étiage afin d'assurer une puissance garantie minimale en étiage (les mois d'étiage sont définis comme les mois qui ont des apports en eau < 250 hm³/par mois, qui change si l'année est humide, moyenne ou sèche)
 - obtenir un niveau d'eau à la fin de l'année proche à celui du début
- c) Le volume total d'eau déversé et évaporé (1)
- d) L'énergie totale produite pendant les mois d'étiage et la puissance (1) hydroélectrique garantie en moyenne pendant les mois d'étiage
- e) Le facteur de charge des turbines (j/année ou en %) et le revenu en EUR (1)

Discussion étendue :

- f) Discutez vos plannings (Question 1b) d'un point de vue énergétique, sécuritaire, (6) écologique, sociale et économique
- g) Quels seraient les avantages et les inconvénients d'abaisser de 10 m le niveau de la crête du déversoir libre de l'évacuateur de crues (soit le niveau RN), toute en gardant le même Nm (par rapport aux résultats de la Question 1b) ?

Nous allons maintenant considérer un horizon de planification plus étendu puisque vous êtes confronté-e-s à la situation suivante : On vient de passer une année particulièrement sèche (i-1) et le niveau d'eau au début de l'année (i) est au niveau minimum d'exploitation. Développez un planning pour l'année suivante (i), à considérer comme une année moyenne, tout en vous préparant à une autre année sèche (i+1) à la suite, c.-à-d. en visant un niveau d'eau maximal dans la retenue à la fin de l'année moyenne (i).

- h) Déterminez le planning mensuel pour cette année moyenne tout en (1)
 - réduisant les pertes d'eau (déversements et évaporation) ;
 - maintenant une production d'énergie minimale [n>0] pendant les mois d'étiage ;
- i) Comparez ce planning (Question 1h) au planning établi auparavant pour une année
 (2) moyenne (Question 1b) et discutez les différences tenant compte des cas.

(18)

Question 2

Un projet de pompage-turbinage est envisagé, soit la construction d'un bassin supérieur sur une colline surplombant le réservoir principal.

-	Niveau maximal d'exploitation (RN) du
	bassin supérieur : 535 m.s.m.

- 1	liveau m	inimal:	fixé à	473	m.s.m.	(Nm)
-----	----------	---------	--------	-----	--------	------

- Débit de turbinage : 7 m³/s
- Débit de pompage : environ 2/3 du débit de turbinage
- 1 groupe pompe-turbine Francis avec un rendement globale 0.81 (en mode pompage et en mode turbinage)

Courbe de stockage du bassin supérieur

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	4.69111351E+02
a1	3.73769019E+00
a2	1.29616945E-01
a3	-2.13739797E-02
a4	9.57339860E-04
a5	-1.91433659E-05
a6	1.43825677E-07

Vous êtes confronté-e-s à la situation suivante : Le **niveau d'eau** du bassin supérieur **en début de l'année** est à 496 m.s.m., et il s'agit d'une **année humide**. Vous voulez maintenant utiliser le bassin supérieur pour **faire du pompage-turbinage saisonnier**. Cela vous permettra de stocker un éventuel excédent d'eau arrivant pendant les mois de forts apports pour le mettre à disposition plus tard, pendant les mois de plus faibles apports et d'étiage. Ainsi, il sera possible **d'irriguer une surface agricole plus importante** pour répondre à la demande croissante du domaine de l'agriculture. La surface irriguée totale peut donc être optimisée, en étendant les 25'000 ha initiaux, pour atteindre une aire maximale de :

 $A_{max} = 25'000 \text{ ha} + A_{opt avecPT}$

A_opt_avecPT, **constante durant toute l'année**, désigne la surface maximale que vous pourrez irriguer en plus en utilisant du pompage-turbinage saisonnier. Pour les prélèvements d'irrigation il faut compter 4 m³/h/ha de décembre à mai et 1 m³/h/ha de juin à novembre.

- a) Déterminez un planning de turbinage pour la centrale de la retenue principale et de (2) celle de pompage-turbinage (PT) pour le bassin supérieur
 - afin de maximiser A_opt_avecPT,
 - tout en maintenant une production d'énergie minimal [n> 0] durant l'année
 - en réduisant au minimum les déversements
 - et en respectant le niveau minimum des réservoirs à la fin de chaque mois
- b) Déterminez pour le planning établi

(1)

- la surface totale irriguée A_max
- le total de l'énergie produite pendant l'année
- et la puissance hydroélectrique garantie en moyenne toute l'année

- c) Considérez le cas exceptionnel d'une panne technique vous empêchant d'exploiter (2) le bassin supérieur. Il faudra adapter le planning pour la retenue principale en conséquence.
 - Quelle est la surface maximale que vous pourrez irriguer à l'aide de la retenue principale seulement, tout au long d'une année humide, sans pompageturbinage saisonnier?
 - Quelle est donc la surface supplémentaire A_sup qui n'est irrigable que grâce au pompage-turbinage saisonnier ? (A_sup = A_opt_avecPT A_opt_sansPT).

Discussion:

- d) Le bassin supérieur est-il utile à augmenter la surface irrigable durant l'année ? (3) Connaissez-vous d'autres modes d'opération pour une installation de pompage-turbinage dont l'utilité pour notre aménagement à buts multiples pourrait être plus évidente, comparé au P-T saisonnier étudié ?
- e) Quelles sont les plus grandes incertitudes dans la planification de la gestion de l'aménagement hydroélectrique de la retenue principale pour les prochaines décennies ?
- f) Quels sont les avantages et les inconvénients de l'outil Excel mis à disposition ? (2)

Consignes rapport

- Max. 12 pages de contenu (Sans compter page de titre, tables des matières)
- Suivre la structure des questions et sous-questions de l'énoncé dans les rapports et garder cette structure dans votre table de matières
- Pour chaque sous-question fournir un résumé des résultats / valeurs quantitatives sous forme de tableaux, le cas échéant
- Soumettre des réponses quantitatives ainsi que sous forme graphique
- Prévoir des étiquettes/légendes complètes pour tous les figures (axes, unités, ...) et essayez de combiner les diagrammes, si possible.
- Donner brièvement une justification/explication des résultats obtenus
- Donner les formules nécessaires à la compréhension des calculs effectués (par ex. pondération moyenne, facteur de charge).

Bon courage!

Exercice 4

Dimensionnement et exploitation d'un réservoir à buts multiples pour la régulation des apports en eau

Groupe 9

Noms et prénoms :

Introduction

Considérez l'aménagement hydraulique à buts multiples de Lambda en Afrique de l'Ouest, conçu pour réguler les apports du fleuve Bafing-Sénégal. La retenue est prévue pour alimenter des périmètres d'irrigation et une usine hydroélectrique, contribuer au soutien d'étiage et au soutien de crue (pour les usagers en aval), à l'alimentation local en eau et à la protection contre les crues.

Données de base

Données hydrologiques

Apports en eau à la section du barrage sur le fleuve Bafing [hm³]

Années	oct	nov	dec	jan	fev	mar	avr	mai	jun	jul	aou	sep
Humide	1838	847	478	338	267	218	230	403	824	1419	1096	1159
Moyenne	864	430	243	190	159	137	183	307	413	520	757	972
Sèche	455	318	172	141	116	97	137	171	214	332	265	253

- Evaporation sur la retenue :
 - 6 mm/jour (1^{er} juin au 30 novembre)
 - 4 mm/jour (en dehors)

Niveau d'eau moyen en aval : 153.5 m.s.m.

Données d'exploitation

- Prélèvement pour l'irrigation, pour un périmètre irrigué totale initiale de 25'000 ha : 4 m³/h/ha (décembre à mai),
 - 1 m³/h/ha (juin à novembre)
- Prélèvement pour soutien d'étiage :
 2 m³/s (décembre à mai)
- Prélèvement pour débit écologique :
 1000 l/s (décembre à mai)
 500 l/s en dehors
- Prélèvement pour eau industrielle du site
 10 m³/j

Données du réservoir

Courbe de stockage

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	1.87394691E+02
a1	3,93926359E-02
a2	-1,59149348E-05
a3	4,69258464E-09
a4	-8,18344516E-13
a5	7.28123126E-17
a6	-2.34419186E-21

- Niveau retenue normal (RN):250.00 m.s.m.
- Niveau minimum d'exploitation (Nm) : 225 m.s.m.

Courbe de surface inondé

A [km²] = f(N [m.s.m])	Facteur Polynôme
a0	1.29539757E+05
a1	-3.62014713E+03
a2	4.19337504E+01
a3	-2.57434881E-01
a4	8.82628895E-04
a5	-1.60137399E-06
a6	1.20134414E-09

- Cote des plus hautes eaux (PHE) : 253.00 m.s.m.
- Niveau seuil vidange de fond (hyp.): 188 m.s.m.

Niveau de la fondation :
 Déversements sur seuil libre :
 A partir de RN

Données de la centrale hydroélectrique

- Type de turbine :Rendement globale des turbinesFrancis0.81
- Nombre de turbines

 I Prix moyen d'électricité

 3 (Q1)

 0.12 EUR / <u>kWh</u>

Exercice

Question 1

Tenant compte des apports en eau estimés pour des années hydrologiques humide, moyenne et sèche, admettant un débit d'équipement de l'usine de 240 m³/s divisé par trois groupes et admettant le niveau d'eau au début de l'année à 245 m.s.m., déterminez pour <u>chaque année hydrologique</u>:

- a) Le volume de déversement sans aucun turbinage (1)
- b) Un planning de turbinage mensuel (nombre de turbines utilisées chaque mois, n = [1,2,3]), afin de le mieux possible :
 - réduire les pertes d'eau (déversements et évaporation)
 - maintenir une production d'énergie >0 pendant les mois d'étiage afin d'assurer une puissance garantie minimale en étiage (les mois d'étiage sont définis comme les mois qui ont des apports en eau < 250 hm³/par mois, qui change si l'année est humide, moyenne ou sèche)
 - obtenir un niveau d'eau à la fin de l'année proche à celui du début
- c) Le volume total d'eau déversé et évaporé (1)
- d) L'énergie totale produite pendant les mois d'étiage et la puissance (1) hydroélectrique garantie en moyenne pendant les mois d'étiage
- e) Le facteur de charge des turbines (j/année ou en %) et le revenu en EUR (1)

Discussion étendue :

- f) Discutez vos plannings (Question 1b) d'un point de vue énergétique, sécuritaire, (6) écologique, sociale et économique
- g) Quels seraient les avantages et les inconvénients d'abaisser de 10 m le niveau de la crête du déversoir libre de l'évacuateur de crues (soit le niveau RN), toute en gardant le même Nm (par rapport aux résultats de la Question 1b) ?

Nous allons maintenant considérer un horizon de planification plus étendu puisque vous êtes confronté-e-s à la situation suivante : On vient de passer une année particulièrement sèche (i-1) et le niveau d'eau au début de l'année (i) est au niveau minimum d'exploitation. Développez un planning pour l'année suivante (i), à considérer comme une année moyenne, tout en vous préparant à une autre année sèche (i+1) à la suite, c.-à-d. en visant un niveau d'eau maximal dans la retenue à la fin de l'année moyenne (i).

- h) Déterminez le planning mensuel pour cette année moyenne tout en (1)
 - réduisant les pertes d'eau (déversements et évaporation) ;
 - maintenant une production d'énergie minimale [n>0] pendant les mois d'étiage ;
- i) Comparez ce planning (Question 1h) au planning établi auparavant pour une année
 (2) moyenne (Question 1b) et discutez les différences tenant compte des cas.

(18)

Question 2

Un projet de pompage-turbinage est envisagé, soit la construction d'un bassin supérieur sur une colline surplombant le réservoir principal.

-	Niveau maximal d'exploitation (RN) du
	bassin supérieur : 530 m.s.m.

-	Niveau	minimal	: fixé	à 473	m.s.m.	(Nm)

- Débit de turbinage : 7 m³/s

 Débit de pompage : environ 2/3 du débit de turbinage

 1 groupe pompe-turbine Francis avec un rendement globale 0.81 (en mode pompage et en mode turbinage)

Courbe de stockage du bassin supérieur

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	4.69111351E+02
a1	3.73769019E+00
a2	1.29616945E-01
a3	-2.13739797E-02
a4	9.57339860E-04
a5	-1.91433659E-05
a6	1.43825677E-07

Vous êtes confronté-e-s à la situation suivante : Le **niveau d'eau** du bassin supérieur **en début de l'année** est à 495 m.s.m., et il s'agit d'une **année humide**. Vous voulez maintenant utiliser le bassin supérieur pour **faire du pompage-turbinage saisonnier**. Cela vous permettra de stocker un éventuel excédent d'eau arrivant pendant les mois de forts apports pour le mettre à disposition plus tard, pendant les mois de plus faibles apports et d'étiage. Ainsi, il sera possible **d'irriguer une surface agricole plus importante** pour répondre à la demande croissante du domaine de l'agriculture. La surface irriguée totale peut donc être optimisée, en étendant les 25'000 ha initiaux, pour atteindre une aire maximale de :

 $A_{max} = 25'000 \text{ ha} + A_{opt avecPT}$

A_opt_avecPT, **constante durant toute l'année**, désigne la surface maximale que vous pourrez irriguer en plus en utilisant du pompage-turbinage saisonnier. Pour les prélèvements d'irrigation il faut compter 4 m³/h/ha de décembre à mai et 1 m³/h/ha de juin à novembre.

- a) Déterminez un planning de turbinage pour la centrale de la retenue principale et de (2) celle de pompage-turbinage (PT) pour le bassin supérieur
 - afin de maximiser A_opt_avecPT,
 - tout en maintenant une production d'énergie minimal [n> 0] durant l'année
 - en réduisant au minimum les déversements
 - et en respectant le niveau minimum des réservoirs à la fin de chaque mois
- b) Déterminez pour le planning établi

(1)

- la surface totale irriguée A_max
- le total de l'énergie produite pendant l'année
- et la puissance hydroélectrique garantie en moyenne toute l'année

- c) Considérez le cas exceptionnel d'une panne technique vous empêchant d'exploiter (2) le bassin supérieur. Il faudra adapter le planning pour la retenue principale en conséquence.
 - Quelle est la surface maximale que vous pourrez irriguer à l'aide de la retenue principale seulement, tout au long d'une année humide, sans pompageturbinage saisonnier?
 - Quelle est donc la surface supplémentaire A_sup qui n'est irrigable que grâce au pompage-turbinage saisonnier ? (A_sup = A_opt_avecPT A_opt_sansPT).

Discussion:

- d) Le bassin supérieur est-il utile à augmenter la surface irrigable durant l'année ? (3) Connaissez-vous d'autres modes d'opération pour une installation de pompage-turbinage dont l'utilité pour notre aménagement à buts multiples pourrait être plus évidente, comparé au P-T saisonnier étudié ?
- e) Quelles sont les plus grandes incertitudes dans la planification de la gestion de l'aménagement hydroélectrique de la retenue principale pour les prochaines décennies ?
- f) Quels sont les avantages et les inconvénients de l'outil Excel mis à disposition ? (2)

Consignes rapport

- Max. 12 pages de contenu (Sans compter page de titre, tables des matières)
- Suivre la structure des questions et sous-questions de l'énoncé dans les rapports et garder cette structure dans votre table de matières
- Pour chaque sous-question fournir un résumé des résultats / valeurs quantitatives sous forme de tableaux, le cas échéant
- Soumettre des réponses quantitatives ainsi que sous forme graphique
- Prévoir des étiquettes/légendes complètes pour tous les figures (axes, unités, ...) et essayez de combiner les diagrammes, si possible.
- Donner brièvement une justification/explication des résultats obtenus
- Donner les formules nécessaires à la compréhension des calculs effectués (par ex. pondération moyenne, facteur de charge).

Bon courage!

Exercice 4

Dimensionnement et exploitation d'un réservoir à buts multiples pour la régulation des apports en eau

Groupe 10

Noms et prénoms :

Introduction

Considérez l'aménagement hydraulique à buts multiples de Lambda en Afrique de l'Ouest, conçu pour réguler les apports du fleuve Bafing-Sénégal. La retenue est prévue pour alimenter des périmètres d'irrigation et une usine hydroélectrique, contribuer au soutien d'étiage et au soutien de crue (pour les usagers en aval), à l'alimentation local en eau et à la protection contre les crues.

Données de base

Données hydrologiques

Apports en eau à la section du barrage sur le fleuve Bafing [hm³]

Années	oct	nov	dec	jan	fev	mar	avr	mai	jun	jul	aou	sep
Humide	1838	847	478	338	267	218	230	403	824	1419	1096	1159
Moyenne	864	430	243	190	159	137	183	307	413	520	757	972
Sèche	455	318	172	141	116	97	137	171	214	332	265	253

- Evaporation sur la retenue :
 - 6 mm/jour (1^{er} juin au 30 novembre)
 - 4 mm/jour (en dehors)

Niveau d'eau moyen en aval : 153.5 m.s.m.

Données d'exploitation

- Prélèvement pour l'irrigation, pour un périmètre irrigué totale initiale de 25'000 ha : 4 m³/h/ha (décembre à mai),
 - 1 m³/h/ha (juin à novembre)
- Prélèvement pour soutien d'étiage :
 2 m³/s (décembre à mai)
- Prélèvement pour débit écologique :
 1000 l/s (décembre à mai)
 500 l/s en dehors
- Prélèvement pour eau industrielle du site
 10 m³/j

Données du réservoir

Courbe de stockage

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	1.87394691E+02
a1	3,93926359E-02
a2	-1,59149348E-05
a3	4,69258464E-09
a4	-8,18344516E-13
a5	7.28123126E-17
a6	-2.34419186E-21

- Niveau retenue normal (RN):250.00 m.s.m.
- Niveau minimum d'exploitation (Nm) : 225 m.s.m.

Courbe de surface inondé

A [km²] = f(N [m.s.m])	Facteur Polynôme
a0	1.29539757E+05
a1	-3.62014713E+03
a2	4.19337504E+01
a3	-2.57434881E-01
a4	8.82628895E-04
a5	-1.60137399E-06
a6	1.20134414E-09

- Cote des plus hautes eaux (PHE) : 253.00 m.s.m.
- Niveau seuil vidange de fond (hyp.): 188 m.s.m.

Niveau de la fondation :
 Déversements sur seuil libre :
 A partir de RN

Données de la centrale hydroélectrique

- Type de turbine :Rendement globale des turbinesFrancis0.81
- Nombre de turbines

 I Prix moyen d'électricité

 3 (Q1)

 0.12 EUR / <u>kWh</u>

Exercice

Question 1

Tenant compte des apports en eau estimés pour des années hydrologiques humide, moyenne et sèche, admettant un débit d'équipement de l'usine de 240 m³/s divisé par trois groupes et admettant le niveau d'eau au début de l'année à 245 m.s.m., déterminez pour <u>chaque année hydrologique</u>:

- a) Le volume de déversement sans aucun turbinage (1)
- b) Un planning de turbinage mensuel (nombre de turbines utilisées chaque mois, n = [1,2,3]), afin de le mieux possible :
 - réduire les pertes d'eau (déversements et évaporation)
 - maintenir une production d'énergie >0 pendant les mois d'étiage afin d'assurer une puissance garantie minimale en étiage (les mois d'étiage sont définis comme les mois qui ont des apports en eau < 250 hm³/par mois, qui change si l'année est humide, moyenne ou sèche)
 - obtenir un niveau d'eau à la fin de l'année proche à celui du début
- c) Le volume total d'eau déversé et évaporé (1)
- d) L'énergie totale produite pendant les mois d'étiage et la puissance (1) hydroélectrique garantie en moyenne pendant les mois d'étiage
- e) Le facteur de charge des turbines (j/année ou en %) et le revenu en EUR (1)

Discussion étendue :

- f) Discutez vos plannings (Question 1b) d'un point de vue énergétique, sécuritaire, (6) écologique, sociale et économique
- g) Quels seraient les avantages et les inconvénients d'abaisser de 10 m le niveau de la crête du déversoir libre de l'évacuateur de crues (soit le niveau RN), toute en gardant le même Nm (par rapport aux résultats de la Question 1b) ?

Nous allons maintenant considérer un horizon de planification plus étendu puisque vous êtes confronté-e-s à la situation suivante : On vient de passer une année particulièrement sèche (i-1) et le niveau d'eau au début de l'année (i) est au niveau minimum d'exploitation. Développez un planning pour l'année suivante (i), à considérer comme une année moyenne, tout en vous préparant à une autre année sèche (i+1) à la suite, c.-à-d. en visant un niveau d'eau maximal dans la retenue à la fin de l'année moyenne (i).

- h) Déterminez le planning mensuel pour cette année moyenne tout en (1)
 - réduisant les pertes d'eau (déversements et évaporation) ;
 - maintenant une production d'énergie minimale [n>0] pendant les mois d'étiage ;
- i) Comparez ce planning (Question 1h) au planning établi auparavant pour une année
 (2) moyenne (Question 1b) et discutez les différences tenant compte des cas.

(18)

Question 2

Un projet de pompage-turbinage est envisagé, soit la construction d'un bassin supérieur sur une colline surplombant le réservoir principal.

-	Niveau maximal d'exploitation (RN) du
	bassin supérieur : 525 m.s.m.

-	Niveau minimal : fixé à 473 m.s.m. (N	m)
---	---------------------------------------	----

- Débit de turbinage : 7 m³/s
- Débit de pompage : environ 2/3 du débit de turbinage
- 1 groupe pompe-turbine Francis avec un rendement globale 0.81 (en mode pompage et en mode turbinage)

Courbe de stockage du bassin supérieur

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	4.69111351E+02
a1	3.73769019E+00
a2	1.29616945E-01
a3	-2.13739797E-02
a4	9.57339860E-04
a5	-1.91433659E-05
a6	1.43825677E-07

Vous êtes confronté-e-s à la situation suivante : Le **niveau d'eau** du bassin supérieur **en début de l'année** est à 500 m.s.m., et il s'agit d'une **année humide**. Vous voulez maintenant utiliser le bassin supérieur pour **faire du pompage-turbinage saisonnier**. Cela vous permettra de stocker un éventuel excédent d'eau arrivant pendant les mois de forts apports pour le mettre à disposition plus tard, pendant les mois de plus faibles apports et d'étiage. Ainsi, il sera possible **d'irriguer une surface agricole plus importante** pour répondre à la demande croissante du domaine de l'agriculture. La surface irriguée totale peut donc être optimisée, en étendant les 25'000 ha initiaux, pour atteindre une aire maximale de :

 $A_{max} = 25'000 \text{ ha} + A_{opt avecPT}$

A_opt_avecPT, **constante durant toute l'année**, désigne la surface maximale que vous pourrez irriguer en plus en utilisant du pompage-turbinage saisonnier. Pour les prélèvements d'irrigation il faut compter 4 m³/h/ha de décembre à mai et 1 m³/h/ha de juin à novembre.

- a) Déterminez un planning de turbinage pour la centrale de la retenue principale et de (2) celle de pompage-turbinage (PT) pour le bassin supérieur
 - afin de maximiser A_opt_avecPT,
 - tout en maintenant une production d'énergie minimal [n> 0] durant l'année
 - en réduisant au minimum les déversements
 - et en respectant le niveau minimum des réservoirs à la fin de chaque mois
- b) Déterminez pour le planning établi

(1)

- la surface totale irriguée A_max
- le total de l'énergie produite pendant l'année
- et la puissance hydroélectrique garantie en moyenne toute l'année

- c) Considérez le cas exceptionnel d'une panne technique vous empêchant d'exploiter (2) le bassin supérieur. Il faudra adapter le planning pour la retenue principale en conséquence.
 - Quelle est la surface maximale que vous pourrez irriguer à l'aide de la retenue principale seulement, tout au long d'une année humide, sans pompageturbinage saisonnier?
 - Quelle est donc la surface supplémentaire A_sup qui n'est irrigable que grâce au pompage-turbinage saisonnier ? (A_sup = A_opt_avecPT A_opt_sansPT).

Discussion:

- d) Le bassin supérieur est-il utile à augmenter la surface irrigable durant l'année ? (3) Connaissez-vous d'autres modes d'opération pour une installation de pompage-turbinage dont l'utilité pour notre aménagement à buts multiples pourrait être plus évidente, comparé au P-T saisonnier étudié ?
- e) Quelles sont les plus grandes incertitudes dans la planification de la gestion de l'aménagement hydroélectrique de la retenue principale pour les prochaines décennies ?
- f) Quels sont les avantages et les inconvénients de l'outil Excel mis à disposition ? (2)

Consignes rapport

- Max. 12 pages de contenu (Sans compter page de titre, tables des matières)
- Suivre la structure des questions et sous-questions de l'énoncé dans les rapports et garder cette structure dans votre table de matières
- Pour chaque sous-question fournir un résumé des résultats / valeurs quantitatives sous forme de tableaux, le cas échéant
- Soumettre des réponses quantitatives ainsi que sous forme graphique
- Prévoir des étiquettes/légendes complètes pour tous les figures (axes, unités, ...) et essayez de combiner les diagrammes, si possible.
- Donner brièvement une justification/explication des résultats obtenus
- Donner les formules nécessaires à la compréhension des calculs effectués (par ex. pondération moyenne, facteur de charge).

Bon courage!

Exercice 4

Dimensionnement et exploitation d'un réservoir à buts multiples pour la régulation des apports en eau

Groupe 11

Noms et prénoms :

Introduction

Considérez l'aménagement hydraulique à buts multiples de Lambda en Afrique de l'Ouest, conçu pour réguler les apports du fleuve Bafing-Sénégal. La retenue est prévue pour alimenter des périmètres d'irrigation et une usine hydroélectrique, contribuer au soutien d'étiage et au soutien de crue (pour les usagers en aval), à l'alimentation local en eau et à la protection contre les crues.

Données de base

Données hydrologiques

Apports en eau à la section du barrage sur le fleuve Bafing [hm³]

Années	oct	nov	dec	jan	fev	mar	avr	mai	jun	jul	aou	sep
Humide	1838	847	478	338	267	218	230	403	824	1419	1096	1159
Moyenne	864	430	243	190	159	137	183	307	413	520	757	972
Sèche	455	318	172	141	116	97	137	171	214	332	265	253

• Evaporation sur la retenue :

6 mm/jour (1^{er} juin au 30 novembre)

4 mm/jour (en dehors)

Niveau d'eau moyen en aval :

153.5 m.s.m.

Données d'exploitation

- Prélèvement pour l'irrigation, pour un périmètre irrigué totale initiale de 25'000 ha : 4 m³/h/ha (décembre à mai), 1 m³/h/ha (juin à novembre)
- Prélèvement pour soutien d'étiage :
 2 m³/s (décembre à mai)
- Prélèvement pour débit écologique :
 1000 l/s (décembre à mai)
 500 l/s en dehors
- Prélèvement pour eau industrielle du site
 10 m³/j

Données du réservoir

Courbe de stockage

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	1.87394691E+02
a1	3,93926359E-02
a2	-1,59149348E-05
a3	4,69258464E-09
a4	-8,18344516E-13
a5	7.28123126E-17
a6	-2.34419186E-21

- Niveau retenue normal (RN):250.00 m.s.m.
- Niveau minimum d'exploitation (Nm) : 227 m.s.m.

Courbe de surface inondé

A [km ²] = f(N [m.s.m])	Facteur Polynôme
a0	1.29539757E+05
a1	-3.62014713E+03
a2	4.19337504E+01
a3	-2.57434881E-01
a4	8.82628895E-04
a5	-1.60137399E-06
a6	1.20134414E-09

- Cote des plus hautes eaux (PHE) : 253.00 m.s.m.
- Niveau seuil vidange de fond (hyp.): 188 m.s.m.

Niveau de la fondation :
 Déversements sur seuil libre :
 A partir de RN

Données de la centrale hydroélectrique

- Type de turbine :Rendement globale des turbinesFrancis0.81
- Nombre de turbines

 I Prix moyen d'électricité

 3 (Q1)

 0.12 EUR / <u>kWh</u>

Exercice

Question 1

Tenant compte des apports en eau estimés pour des années hydrologiques humide, moyenne et sèche, admettant un débit d'équipement de l'usine de 240 m³/s divisé par trois groupes et admettant le niveau d'eau au début de l'année à 245 m.s.m., déterminez pour <u>chaque année hydrologique</u>:

- a) Le volume de déversement sans aucun turbinage (1)
- b) Un planning de turbinage mensuel (nombre de turbines utilisées chaque mois, n = [1,2,3]), afin de le mieux possible :
 - réduire les pertes d'eau (déversements et évaporation)
 - maintenir une production d'énergie >0 pendant les mois d'étiage afin d'assurer une puissance garantie minimale en étiage (les mois d'étiage sont définis comme les mois qui ont des apports en eau < 250 hm³/par mois, qui change si l'année est humide, moyenne ou sèche)
 - obtenir un niveau d'eau à la fin de l'année proche à celui du début
- c) Le volume total d'eau déversé et évaporé (1)
- d) L'énergie totale produite pendant les mois d'étiage et la puissance (1) hydroélectrique garantie en moyenne pendant les mois d'étiage
- e) Le facteur de charge des turbines (j/année ou en %) et le revenu en EUR (1)

Discussion étendue :

- f) Discutez vos plannings (Question 1b) d'un point de vue énergétique, sécuritaire, (6) écologique, sociale et économique
- g) Quels seraient les avantages et les inconvénients d'abaisser de 10 m le niveau de la crête du déversoir libre de l'évacuateur de crues (soit le niveau RN), toute en gardant le même Nm (par rapport aux résultats de la Question 1b) ?

Nous allons maintenant considérer un horizon de planification plus étendu puisque vous êtes confronté-e-s à la situation suivante : On vient de passer une année particulièrement sèche (i-1) et le niveau d'eau au début de l'année (i) est au niveau minimum d'exploitation. Développez un planning pour l'année suivante (i), à considérer comme une année moyenne, tout en vous préparant à une autre année sèche (i+1) à la suite, c.-à-d. en visant un niveau d'eau maximal dans la retenue à la fin de l'année moyenne (i).

- h) Déterminez le planning mensuel pour cette année moyenne tout en (1)
 - réduisant les pertes d'eau (déversements et évaporation) ;
 - maintenant une production d'énergie minimale [n>0] pendant les mois d'étiage ;
- i) Comparez ce planning (Question 1h) au planning établi auparavant pour une année
 (2) moyenne (Question 1b) et discutez les différences tenant compte des cas.

(18)

Question 2

Un projet de pompage-turbinage est envisagé, soit la construction d'un bassin supérieur sur une colline surplombant le réservoir principal.

-	Niveau maximal d'exploitation (RN) du
	bassin supérieur : 525 m.s.m.

- Niveau minimal : fixé à 473 m.s.m. (N	۱m)
---	-----

- Débit de turbinage : 7 m³/s

 Débit de pompage : environ 2/3 du débit de turbinage

 1 groupe pompe-turbine Francis avec un rendement globale 0.81 (en mode pompage et en mode turbinage)

Courbe de stockage du bassin supérieur

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	4.69111351E+02
a1	3.73769019E+00
a2	1.29616945E-01
a3	-2.13739797E-02
a4	9.57339860E-04
a5	-1.91433659E-05
a6	1.43825677E-07

Vous êtes confronté-e-s à la situation suivante : Le **niveau d'eau** du bassin supérieur **en début de l'année** est à 499 m.s.m., et il s'agit d'une **année humide**. Vous voulez maintenant utiliser le bassin supérieur pour **faire du pompage-turbinage saisonnier**. Cela vous permettra de stocker un éventuel excédent d'eau arrivant pendant les mois de forts apports pour le mettre à disposition plus tard, pendant les mois de plus faibles apports et d'étiage. Ainsi, il sera possible **d'irriguer une surface agricole plus importante** pour répondre à la demande croissante du domaine de l'agriculture. La surface irriguée totale peut donc être optimisée, en étendant les 25'000 ha initiaux, pour atteindre une aire maximale de :

 $A_{max} = 25'000 \text{ ha} + A_{opt avecPT}$

A_opt_avecPT, **constante durant toute l'année**, désigne la surface maximale que vous pourrez irriguer en plus en utilisant du pompage-turbinage saisonnier. Pour les prélèvements d'irrigation il faut compter 4 m³/h/ha de décembre à mai et 1 m³/h/ha de juin à novembre.

- a) Déterminez un planning de turbinage pour la centrale de la retenue principale et de (2) celle de pompage-turbinage (PT) pour le bassin supérieur
 - afin de maximiser A_opt_avecPT,
 - tout en maintenant une production d'énergie minimal [n> 0] durant l'année
 - en réduisant au minimum les déversements
 - et en respectant le niveau minimum des réservoirs à la fin de chaque mois
- b) Déterminez pour le planning établi

(1)

- la surface totale irriguée A_max
- le total de l'énergie produite pendant l'année
- et la puissance hydroélectrique garantie en moyenne toute l'année

- c) Considérez le cas exceptionnel d'une panne technique vous empêchant d'exploiter (2) le bassin supérieur. Il faudra adapter le planning pour la retenue principale en conséquence.
 - Quelle est la surface maximale que vous pourrez irriguer à l'aide de la retenue principale seulement, tout au long d'une année humide, sans pompageturbinage saisonnier?
 - Quelle est donc la surface supplémentaire A_sup qui n'est irrigable que grâce au pompage-turbinage saisonnier ? (A_sup = A_opt_avecPT A_opt_sansPT).

Discussion:

- d) Le bassin supérieur est-il utile à augmenter la surface irrigable durant l'année ? (3) Connaissez-vous d'autres modes d'opération pour une installation de pompage-turbinage dont l'utilité pour notre aménagement à buts multiples pourrait être plus évidente, comparé au P-T saisonnier étudié ?
- e) Quelles sont les plus grandes incertitudes dans la planification de la gestion de l'aménagement hydroélectrique de la retenue principale pour les prochaines décennies ?
- f) Quels sont les avantages et les inconvénients de l'outil Excel mis à disposition ? (2)

Consignes rapport

- Max. 12 pages de contenu (Sans compter page de titre, tables des matières)
- Suivre la structure des questions et sous-questions de l'énoncé dans les rapports et garder cette structure dans votre table de matières
- Pour chaque sous-question fournir un résumé des résultats / valeurs quantitatives sous forme de tableaux, le cas échéant
- Soumettre des réponses quantitatives ainsi que sous forme graphique
- Prévoir des étiquettes/légendes complètes pour tous les figures (axes, unités, ...) et essayez de combiner les diagrammes, si possible.
- Donner brièvement une justification/explication des résultats obtenus
- Donner les formules nécessaires à la compréhension des calculs effectués (par ex. pondération moyenne, facteur de charge).

Bon courage!

Exercice 4

Dimensionnement et exploitation d'un réservoir à buts multiples pour la régulation des apports en eau

Groupe 12

Noms et prénoms :

Introduction

Considérez l'aménagement hydraulique à buts multiples de Lambda en Afrique de l'Ouest, conçu pour réguler les apports du fleuve Bafing-Sénégal. La retenue est prévue pour alimenter des périmètres d'irrigation et une usine hydroélectrique, contribuer au soutien d'étiage et au soutien de crue (pour les usagers en aval), à l'alimentation local en eau et à la protection contre les crues.

Données de base

Données hydrologiques

Apports en eau à la section du barrage sur le fleuve Bafing [hm³]

Années	oct	nov	dec	jan	fev	mar	avr	mai	jun	jul	aou	sep
Humide	1838	847	478	338	267	218	230	403	824	1419	1096	1159
Moyenne	864	430	243	190	159	137	183	307	413	520	757	972
Sèche	455	318	172	141	116	97	137	171	214	332	265	253

■ Evaporation sur la retenue :

6 mm/jour (1^{er} juin au 30 novembre)

4 mm/jour (en dehors)

Niveau d'eau moyen en aval :

153.5 m.s.m.

Données d'exploitation

- Prélèvement pour l'irrigation, pour un périmètre irrigué totale initiale de 25'000 ha : 4 m³/h/ha (décembre à mai),
 1 m³/h/ha (ivin à novembre)
 - 1 m³/h/ha (juin à novembre)
- Prélèvement pour soutien d'étiage :
 2 m³/s (décembre à mai)
- Prélèvement pour débit écologique :
 1000 l/s (décembre à mai)
 500 l/s en dehors
- Prélèvement pour eau industrielle du site
 10 m³/j

Données du réservoir

Courbe de stockage

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	1.87394691E+02
a1	3,93926359E-02
a2	-1,59149348E-05
a3	4,69258464E-09
a4	-8,18344516E-13
a5	7.28123126E-17
a6	-2.34419186E-21

- Niveau retenue normal (RN):250.00 m.s.m.
- Niveau minimum d'exploitation (Nm) : 224 m.s.m.

Courbe de surface inondé

A [km²] = f(N [m.s.m])	Facteur Polynôme
a0	1.29539757E+05
a1	-3.62014713E+03
a2	4.19337504E+01
a3	-2.57434881E-01
a4	8.82628895E-04
a5	-1.60137399E-06
a6	1.20134414E-09

- Cote des plus hautes eaux (PHE) : 253.00 m.s.m.
- Niveau seuil vidange de fond (hyp.): 188 m.s.m.

Niveau de la fondation :
 Déversements sur seuil libre :
 A partir de RN

Données de la centrale hydroélectrique

- Type de turbine :Rendement globale des turbinesFrancis0.81
- Nombre de turbines

 I Prix moyen d'électricité

 3 (Q1)

 0.12 EUR / <u>kWh</u>

Exercice

Question 1

Tenant compte des apports en eau estimés pour des années hydrologiques humide, moyenne et sèche, admettant un débit d'équipement de l'usine de 240 m³/s divisé par trois groupes et admettant le niveau d'eau au début de l'année à 245 m.s.m., déterminez pour <u>chaque année hydrologique</u>:

- a) Le volume de déversement sans aucun turbinage (1)
- b) Un planning de turbinage mensuel (nombre de turbines utilisées chaque mois, n = [1,2,3]), afin de le mieux possible :
 - réduire les pertes d'eau (déversements et évaporation)
 - maintenir une production d'énergie >0 pendant les mois d'étiage afin d'assurer une puissance garantie minimale en étiage (les mois d'étiage sont définis comme les mois qui ont des apports en eau < 250 hm³/par mois, qui change si l'année est humide, moyenne ou sèche)
 - obtenir un niveau d'eau à la fin de l'année proche à celui du début
- c) Le volume total d'eau déversé et évaporé (1)
- d) L'énergie totale produite pendant les mois d'étiage et la puissance (1) hydroélectrique garantie en moyenne pendant les mois d'étiage
- e) Le facteur de charge des turbines (j/année ou en %) et le revenu en EUR (1)

Discussion étendue :

- f) Discutez vos plannings (Question 1b) d'un point de vue énergétique, sécuritaire, (6) écologique, sociale et économique
- g) Quels seraient les avantages et les inconvénients d'abaisser de 10 m le niveau de la crête du déversoir libre de l'évacuateur de crues (soit le niveau RN), toute en gardant le même Nm (par rapport aux résultats de la Question 1b) ?

Nous allons maintenant considérer un horizon de planification plus étendu puisque vous êtes confronté-e-s à la situation suivante : On vient de passer une année particulièrement sèche (i-1) et le niveau d'eau au début de l'année (i) est au niveau minimum d'exploitation. Développez un planning pour l'année suivante (i), à considérer comme une année moyenne, tout en vous préparant à une autre année sèche (i+1) à la suite, c.-à-d. en visant un niveau d'eau maximal dans la retenue à la fin de l'année moyenne (i).

- h) Déterminez le planning mensuel pour cette année moyenne tout en (1)
 - réduisant les pertes d'eau (déversements et évaporation) ;
 - maintenant une production d'énergie minimale [n>0] pendant les mois d'étiage ;
- i) Comparez ce planning (Question 1h) au planning établi auparavant pour une année
 (2) moyenne (Question 1b) et discutez les différences tenant compte des cas.

(18)

Question 2

Un projet de pompage-turbinage est envisagé, soit la construction d'un bassin supérieur sur une colline surplombant le réservoir principal.

-	Niveau maximal d'exploitation (RN) du
	bassin supérieur : 530 m.s.m.

- Niveau minimal : fixé à 473 m.s.m. (Nm)

- Débit de turbinage : 7 m³/s
- Débit de pompage : environ 2/3 du débit de turbinage
- 1 groupe pompe-turbine Francis avec un rendement globale 0.81 (en mode pompage et en mode turbinage)

Courbe de stockage du bassin supérieur

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	4.69111351E+02
a1	3.73769019E+00
a2	1.29616945E-01
a3	-2.13739797E-02
a4	9.57339860E-04
a5	-1.91433659E-05
a6	1.43825677E-07

Vous êtes confronté-e-s à la situation suivante : Le **niveau d'eau** du bassin supérieur **en début de l'année** est à 498 m.s.m., et il s'agit d'une **année humide**. Vous voulez maintenant utiliser le bassin supérieur pour **faire du pompage-turbinage saisonnier**. Cela vous permettra de stocker un éventuel excédent d'eau arrivant pendant les mois de forts apports pour le mettre à disposition plus tard, pendant les mois de plus faibles apports et d'étiage. Ainsi, il sera possible **d'irriguer une surface agricole plus importante** pour répondre à la demande croissante du domaine de l'agriculture. La surface irriguée totale peut donc être optimisée, en étendant les 25'000 ha initiaux, pour atteindre une aire maximale de :

 $A_{max} = 25'000 \text{ ha} + A_{opt avecPT}$

A_opt_avecPT, **constante durant toute l'année**, désigne la surface maximale que vous pourrez irriguer en plus en utilisant du pompage-turbinage saisonnier. Pour les prélèvements d'irrigation il faut compter 4 m³/h/ha de décembre à mai et 1 m³/h/ha de juin à novembre.

- a) Déterminez un planning de turbinage pour la centrale de la retenue principale et de (2) celle de pompage-turbinage (PT) pour le bassin supérieur
 - afin de maximiser A_opt_avecPT,
 - tout en maintenant une production d'énergie minimal [n> 0] durant l'année
 - en réduisant au minimum les déversements
 - et en respectant le niveau minimum des réservoirs à la fin de chaque mois
- b) Déterminez pour le planning établi

(1)

- la surface totale irriguée A_max
- le total de l'énergie produite pendant l'année
- et la puissance hydroélectrique garantie en moyenne toute l'année

- c) Considérez le cas exceptionnel d'une panne technique vous empêchant d'exploiter (2) le bassin supérieur. Il faudra adapter le planning pour la retenue principale en conséquence.
 - Quelle est la surface maximale que vous pourrez irriguer à l'aide de la retenue principale seulement, tout au long d'une année humide, sans pompageturbinage saisonnier?
 - Quelle est donc la surface supplémentaire A_sup qui n'est irrigable que grâce au pompage-turbinage saisonnier ? (A_sup = A_opt_avecPT A_opt_sansPT).

Discussion:

- d) Le bassin supérieur est-il utile à augmenter la surface irrigable durant l'année ? (3) Connaissez-vous d'autres modes d'opération pour une installation de pompage-turbinage dont l'utilité pour notre aménagement à buts multiples pourrait être plus évidente, comparé au P-T saisonnier étudié ?
- e) Quelles sont les plus grandes incertitudes dans la planification de la gestion de l'aménagement hydroélectrique de la retenue principale pour les prochaines décennies ?
- f) Quels sont les avantages et les inconvénients de l'outil Excel mis à disposition ? (2)

Consignes rapport

- Max. 12 pages de contenu (Sans compter page de titre, tables des matières)
- Suivre la structure des questions et sous-questions de l'énoncé dans les rapports et garder cette structure dans votre table de matières
- Pour chaque sous-question fournir un résumé des résultats / valeurs quantitatives sous forme de tableaux, le cas échéant
- Soumettre des réponses quantitatives ainsi que sous forme graphique
- Prévoir des étiquettes/légendes complètes pour tous les figures (axes, unités, ...) et essayez de combiner les diagrammes, si possible.
- Donner brièvement une justification/explication des résultats obtenus
- Donner les formules nécessaires à la compréhension des calculs effectués (par ex. pondération moyenne, facteur de charge).

Bon courage!

Exercice 4

Dimensionnement et exploitation d'un réservoir à buts multiples pour la régulation des apports en eau

Groupe 13

Noms et prénoms :

Introduction

Considérez l'aménagement hydraulique à buts multiples de Lambda en Afrique de l'Ouest, conçu pour réguler les apports du fleuve Bafing-Sénégal. La retenue est prévue pour alimenter des périmètres d'irrigation et une usine hydroélectrique, contribuer au soutien d'étiage et au soutien de crue (pour les usagers en aval), à l'alimentation local en eau et à la protection contre les crues.

Données de base

Données hydrologiques

Apports en eau à la section du barrage sur le fleuve Bafing [hm³]

Années	oct	nov	dec	jan	fev	mar	avr	mai	jun	jul	aou	sep
Humide	1838	847	478	338	267	218	230	403	824	1419	1096	1159
Moyenne	864	430	243	190	159	137	183	307	413	520	757	972
Sèche	455	318	172	141	116	97	137	171	214	332	265	253

Evaporation sur la retenue :

6 mm/jour (1^{er} juin au 30 novembre)

4 mm/jour (en dehors)

Niveau d'eau moyen en aval:

153.5 m.s.m.

Données d'exploitation

- Prélèvement pour l'irrigation, pour un périmètre irrigué totale initiale de 25'000 ha: 4 m³/h/ha (décembre à mai), 1 m³/h/ha (juin à novembre)
- Prélèvement pour soutien d'étiage :
- 2 m³/s (décembre à mai)
- Prélèvement pour débit écologique : 1000 l/s (décembre à mai) 500 l/s en dehors
- Prélèvement pour eau industrielle du site $10 \text{ m}^3/\text{j}$

Données du réservoir

Courbe de stockage

Facteur Polynôme
1.87394691E+02
3,93926359E-02
-1,59149348E-05
4,69258464E-09
-8,18344516E-13
7.28123126E-17
-2.34419186E-21

- Niveau retenue normal (RN) : 250.00 m.s.m.
- Niveau minimum d'exploitation (Nm) : 226 m.s.m.

Courbe de surface inondé

A [km²] = f(N [m.s.m])	Facteur Polynôme
a0	1.29539757E+05
a1	-3.62014713E+03
a2	4.19337504E+01
a3	-2.57434881E-01
a4	8.82628895E-04
a5	-1.60137399E-06
a6	1.20134414E-09

- Cote des plus hautes eaux (PHE) : 253.00 m.s.m.
- Niveau seuil vidange de fond (hyp.): 188 m.s.m.

Niveau de la fondation :
 Déversements sur seuil libre :
 A partir de RN

Données de la centrale hydroélectrique

- Type de turbine :Rendement globale des turbinesFrancis0.81
- Nombre de turbines

 I Prix moyen d'électricité

 3 (Q1)

 0.12 EUR / <u>kWh</u>

Exercice

Question 1

Tenant compte des apports en eau estimés pour des années hydrologiques humide, moyenne et sèche, admettant un débit d'équipement de l'usine de 240 m³/s divisé par trois groupes et admettant le niveau d'eau au début de l'année à 245 m.s.m., déterminez pour <u>chaque année hydrologique</u>:

- a) Le volume de déversement sans aucun turbinage (1)
- b) Un planning de turbinage mensuel (nombre de turbines utilisées chaque mois, n = [1,2,3]), afin de le mieux possible :
 - réduire les pertes d'eau (déversements et évaporation)
 - maintenir une production d'énergie >0 pendant les mois d'étiage afin d'assurer une puissance garantie minimale en étiage (les mois d'étiage sont définis comme les mois qui ont des apports en eau < 250 hm³/par mois, qui change si l'année est humide, moyenne ou sèche)
 - obtenir un niveau d'eau à la fin de l'année proche à celui du début
- c) Le volume total d'eau déversé et évaporé (1)
- d) L'énergie totale produite pendant les mois d'étiage et la puissance (1) hydroélectrique garantie en moyenne pendant les mois d'étiage
- e) Le facteur de charge des turbines (j/année ou en %) et le revenu en EUR (1)

Discussion étendue :

- f) Discutez vos plannings (Question 1b) d'un point de vue énergétique, sécuritaire, (6) écologique, sociale et économique
- g) Quels seraient les avantages et les inconvénients d'abaisser de 10 m le niveau de la crête du déversoir libre de l'évacuateur de crues (soit le niveau RN), toute en gardant le même Nm (par rapport aux résultats de la Question 1b) ?

Nous allons maintenant considérer un horizon de planification plus étendu puisque vous êtes confronté-e-s à la situation suivante : On vient de passer une année particulièrement sèche (i-1) et le niveau d'eau au début de l'année (i) est au niveau minimum d'exploitation. Développez un planning pour l'année suivante (i), à considérer comme une année moyenne, tout en vous préparant à une autre année sèche (i+1) à la suite, c.-à-d. en visant un niveau d'eau maximal dans la retenue à la fin de l'année moyenne (i).

- h) Déterminez le planning mensuel pour cette année moyenne tout en (1)
 - réduisant les pertes d'eau (déversements et évaporation) ;
 - maintenant une production d'énergie minimale [n>0] pendant les mois d'étiage ;
- i) Comparez ce planning (Question 1h) au planning établi auparavant pour une année
 (2) moyenne (Question 1b) et discutez les différences tenant compte des cas.

(18)

Question 2

Un projet de pompage-turbinage est envisagé, soit la construction d'un bassin supérieur sur une colline surplombant le réservoir principal.

-	Niveau maximal d'exploitation (RN) du
	bassin supérieur : 525 m.s.m.

- Niveau minimal : fixé à 473 m.s.m. (N	۱m)
---	-----

- Débit de turbinage : 7 m³/s

 Débit de pompage : environ 2/3 du débit de turbinage

- 1 groupe pompe-turbine Francis avec un rendement globale 0.81 (en mode pompage et en mode turbinage)

Courbe de stockage du bassin supérieur

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	4.69111351E+02
a1	3.73769019E+00
a2	1.29616945E-01
a3	-2.13739797E-02
a4	9.57339860E-04
a5	-1.91433659E-05
a6	1.43825677E-07

Vous êtes confronté-e-s à la situation suivante : Le **niveau d'eau** du bassin supérieur **en début de l'année** est à 503 m.s.m., et il s'agit d'une **année humide**. Vous voulez maintenant utiliser le bassin supérieur pour **faire du pompage-turbinage saisonnier**. Cela vous permettra de stocker un éventuel excédent d'eau arrivant pendant les mois de forts apports pour le mettre à disposition plus tard, pendant les mois de plus faibles apports et d'étiage. Ainsi, il sera possible **d'irriguer une surface agricole plus importante** pour répondre à la demande croissante du domaine de l'agriculture. La surface irriguée totale peut donc être optimisée, en étendant les 25'000 ha initiaux, pour atteindre une aire maximale de :

 $A_{max} = 25'000 \text{ ha} + A_{opt avecPT}$

A_opt_avecPT, **constante durant toute l'année**, désigne la surface maximale que vous pourrez irriguer en plus en utilisant du pompage-turbinage saisonnier. Pour les prélèvements d'irrigation il faut compter 4 m³/h/ha de décembre à mai et 1 m³/h/ha de juin à novembre.

- a) Déterminez un planning de turbinage pour la centrale de la retenue principale et de (2) celle de pompage-turbinage (PT) pour le bassin supérieur
 - afin de maximiser A_opt_avecPT,
 - tout en maintenant une production d'énergie minimal [n> 0] durant l'année
 - en réduisant au minimum les déversements
 - et en respectant le niveau minimum des réservoirs à la fin de chaque mois
- b) Déterminez pour le planning établi

(1)

- la surface totale irriguée A_max
- le total de l'énergie produite pendant l'année
- et la puissance hydroélectrique garantie en moyenne toute l'année

- c) Considérez le cas exceptionnel d'une panne technique vous empêchant d'exploiter (2) le bassin supérieur. Il faudra adapter le planning pour la retenue principale en conséquence.
 - Quelle est la surface maximale que vous pourrez irriguer à l'aide de la retenue principale seulement, tout au long d'une année humide, sans pompageturbinage saisonnier?
 - Quelle est donc la surface supplémentaire A_sup qui n'est irrigable que grâce au pompage-turbinage saisonnier ? (A_sup = A_opt_avecPT A_opt_sansPT).

Discussion:

- d) Le bassin supérieur est-il utile à augmenter la surface irrigable durant l'année ? (3) Connaissez-vous d'autres modes d'opération pour une installation de pompage-turbinage dont l'utilité pour notre aménagement à buts multiples pourrait être plus évidente, comparé au P-T saisonnier étudié ?
- e) Quelles sont les plus grandes incertitudes dans la planification de la gestion de l'aménagement hydroélectrique de la retenue principale pour les prochaines décennies ?
- f) Quels sont les avantages et les inconvénients de l'outil Excel mis à disposition ? (2)

Consignes rapport

- Max. 12 pages de contenu (Sans compter page de titre, tables des matières)
- Suivre la structure des questions et sous-questions de l'énoncé dans les rapports et garder cette structure dans votre table de matières
- Pour chaque sous-question fournir un résumé des résultats / valeurs quantitatives sous forme de tableaux, le cas échéant
- Soumettre des réponses quantitatives ainsi que sous forme graphique
- Prévoir des étiquettes/légendes complètes pour tous les figures (axes, unités, ...) et essayez de combiner les diagrammes, si possible.
- Donner brièvement une justification/explication des résultats obtenus
- Donner les formules nécessaires à la compréhension des calculs effectués (par ex. pondération moyenne, facteur de charge).

Bon courage!

Exercice 4

Dimensionnement et exploitation d'un réservoir à buts multiples pour la régulation des apports en eau

Groupe 14

Noms et prénoms :

Introduction

Considérez l'aménagement hydraulique à buts multiples de Lambda en Afrique de l'Ouest, conçu pour réguler les apports du fleuve Bafing-Sénégal. La retenue est prévue pour alimenter des périmètres d'irrigation et une usine hydroélectrique, contribuer au soutien d'étiage et au soutien de crue (pour les usagers en aval), à l'alimentation local en eau et à la protection contre les crues.

Données de base

Données hydrologiques

Apports en eau à la section du barrage sur le fleuve Bafing [hm³]

Années	oct	nov	dec	jan	fev	mar	avr	mai	jun	jul	aou	sep
Humide	1838	847	478	338	267	218	230	403	824	1419	1096	1159
Moyenne	864	430	243	190	159	137	183	307	413	520	757	972
Sèche	455	318	172	141	116	97	137	171	214	332	265	253

- Evaporation sur la retenue :
 - 6 mm/jour (1^{er} juin au 30 novembre)
 - 4 mm/jour (en dehors)

Niveau d'eau moyen en aval : 153.5 m.s.m.

Données d'exploitation

- Prélèvement pour l'irrigation, pour un périmètre irrigué totale initiale de 25'000 ha : 4 m³/h/ha (décembre à mai),
 1 m³/h/ha (ivin à novembre)
 - 1 m³/h/ha (juin à novembre)
- Prélèvement pour soutien d'étiage :
 2 m³/s (décembre à mai)
- Prélèvement pour débit écologique :
 1000 l/s (décembre à mai)
 500 l/s en dehors
- Prélèvement pour eau industrielle du site
 10 m³/j

Données du réservoir

Courbe de stockage

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	1.87394691E+02
a1	3,93926359E-02
a2	-1,59149348E-05
a3	4,69258464E-09
a4	-8,18344516E-13
a5	7.28123126E-17
a6	-2.34419186E-21

- Niveau retenue normal (RN):250.00 m.s.m.
- Niveau minimum d'exploitation (Nm) : 228 m.s.m.

Courbe de surface inondé

A [km ²] = f(N [m.s.m])	Facteur Polynôme
a0	1.29539757E+05
a1	-3.62014713E+03
a2	4.19337504E+01
a3	-2.57434881E-01
a4	8.82628895E-04
a5	-1.60137399E-06
a6	1.20134414E-09

- Cote des plus hautes eaux (PHE) : 253.00 m.s.m.
- Niveau seuil vidange de fond (hyp.):188 m.s.m.

Niveau de la fondation :
 Déversements sur seuil libre :
 A partir de RN

Données de la centrale hydroélectrique

- Type de turbine : Rendement globale des turbinesFrancis 0.81
- Nombre de turbines
 Prix moyen d'électricité
 3 (Q1)

 0.12 EUR / <u>kWh</u>

Exercice

Question 1

Tenant compte des apports en eau estimés pour des années hydrologiques humide, moyenne et sèche, admettant un débit d'équipement de l'usine de 255 m³/s divisé par trois groupes et admettant le niveau d'eau au début de l'année à 245 m.s.m., déterminez pour <u>chaque année hydrologique</u>:

- a) Le volume de déversement sans aucun turbinage (1)
- b) Un planning de turbinage mensuel (nombre de turbines utilisées chaque mois, n = [1,2,3]), afin de le mieux possible :
 - réduire les pertes d'eau (déversements et évaporation)
 - maintenir une production d'énergie >0 pendant les mois d'étiage afin d'assurer une puissance garantie minimale en étiage (les mois d'étiage sont définis comme les mois qui ont des apports en eau < 250 hm³/par mois, qui change si l'année est humide, moyenne ou sèche)
 - obtenir un niveau d'eau à la fin de l'année proche à celui du début
- c) Le volume total d'eau déversé et évaporé (1)
- d) L'énergie totale produite pendant les mois d'étiage et la puissance (1) hydroélectrique garantie en moyenne pendant les mois d'étiage
- e) Le facteur de charge des turbines (j/année ou en %) et le revenu en EUR (1)

Discussion étendue :

- f) Discutez vos plannings (Question 1b) d'un point de vue énergétique, sécuritaire, (6) écologique, sociale et économique
- g) Quels seraient les avantages et les inconvénients d'abaisser de 10 m le niveau de la crête du déversoir libre de l'évacuateur de crues (soit le niveau RN), toute en gardant le même Nm (par rapport aux résultats de la Question 1b) ?

Nous allons maintenant considérer un horizon de planification plus étendu puisque vous êtes confronté-e-s à la situation suivante : On vient de passer une année particulièrement sèche (i-1) et le niveau d'eau au début de l'année (i) est au niveau minimum d'exploitation. Développez un planning pour l'année suivante (i), à considérer comme une année moyenne, tout en vous préparant à une autre année sèche (i+1) à la suite, c.-à-d. en visant un niveau d'eau maximal dans la retenue à la fin de l'année moyenne (i).

- h) Déterminez le planning mensuel pour cette année moyenne tout en (1)
 - réduisant les pertes d'eau (déversements et évaporation) ;
 - maintenant une production d'énergie minimale [n>0] pendant les mois d'étiage ;
- i) Comparez ce planning (Question 1h) au planning établi auparavant pour une année
 (2) moyenne (Question 1b) et discutez les différences tenant compte des cas.

(18)

Question 2

Un projet de pompage-turbinage est envisagé, soit la construction d'un bassin supérieur sur une colline surplombant le réservoir principal.

-	Niveau maximal d'exploitation (RN) du
	bassin supérieur : 535 m.s.m.

-	Niveau	minimal	: fixé	à 473	m.s.m.	(Nm)
---	--------	---------	--------	-------	--------	------

- Débit de turbinage : 7 m³/s
- Débit de pompage : environ 2/3 du débit de turbinage
- 1 groupe pompe-turbine Francis avec un rendement globale 0.81 (en mode pompage et en mode turbinage)

Courbe de stockage du bassin supérieur

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	4.69111351E+02
a1	3.73769019E+00
a2	1.29616945E-01
a3	-2.13739797E-02
a4	9.57339860E-04
a5	-1.91433659E-05
a6	1.43825677E-07

Vous êtes confronté-e-s à la situation suivante : Le **niveau d'eau** du bassin supérieur **en début de l'année** est à 502 m.s.m., et il s'agit d'une **année humide**. Vous voulez maintenant utiliser le bassin supérieur pour **faire du pompage-turbinage saisonnier**. Cela vous permettra de stocker un éventuel excédent d'eau arrivant pendant les mois de forts apports pour le mettre à disposition plus tard, pendant les mois de plus faibles apports et d'étiage. Ainsi, il sera possible **d'irriguer une surface agricole plus importante** pour répondre à la demande croissante du domaine de l'agriculture. La surface irriguée totale peut donc être optimisée, en étendant les 25'000 ha initiaux, pour atteindre une aire maximale de :

 $A_{max} = 25'000 \text{ ha} + A_{opt avecPT}$

A_opt_avecPT, **constante durant toute l'année**, désigne la surface maximale que vous pourrez irriguer en plus en utilisant du pompage-turbinage saisonnier. Pour les prélèvements d'irrigation il faut compter 4 m³/h/ha de décembre à mai et 1 m³/h/ha de juin à novembre.

- a) Déterminez un planning de turbinage pour la centrale de la retenue principale et de (2) celle de pompage-turbinage (PT) pour le bassin supérieur
 - afin de maximiser A_opt_avecPT,
 - tout en maintenant une production d'énergie minimal [n> 0] durant l'année
 - en réduisant au minimum les déversements
 - et en respectant le niveau minimum des réservoirs à la fin de chaque mois
- b) Déterminez pour le planning établi

(1)

- la surface totale irriguée A_max
- le total de l'énergie produite pendant l'année
- et la puissance hydroélectrique garantie en moyenne toute l'année

- c) Considérez le cas exceptionnel d'une panne technique vous empêchant d'exploiter (2) le bassin supérieur. Il faudra adapter le planning pour la retenue principale en conséquence.
 - Quelle est la surface maximale que vous pourrez irriguer à l'aide de la retenue principale seulement, tout au long d'une année humide, sans pompageturbinage saisonnier?
 - Quelle est donc la surface supplémentaire A_sup qui n'est irrigable que grâce au pompage-turbinage saisonnier ? (A_sup = A_opt_avecPT A_opt_sansPT).

Discussion:

- d) Le bassin supérieur est-il utile à augmenter la surface irrigable durant l'année ? (3) Connaissez-vous d'autres modes d'opération pour une installation de pompage-turbinage dont l'utilité pour notre aménagement à buts multiples pourrait être plus évidente, comparé au P-T saisonnier étudié ?
- e) Quelles sont les plus grandes incertitudes dans la planification de la gestion de l'aménagement hydroélectrique de la retenue principale pour les prochaines décennies ?
- f) Quels sont les avantages et les inconvénients de l'outil Excel mis à disposition ? (2)

Consignes rapport

- Max. 12 pages de contenu (Sans compter page de titre, tables des matières)
- Suivre la structure des questions et sous-questions de l'énoncé dans les rapports et garder cette structure dans votre table de matières
- Pour chaque sous-question fournir un résumé des résultats / valeurs quantitatives sous forme de tableaux, le cas échéant
- Soumettre des réponses quantitatives ainsi que sous forme graphique
- Prévoir des étiquettes/légendes complètes pour tous les figures (axes, unités, ...) et essayez de combiner les diagrammes, si possible.
- Donner brièvement une justification/explication des résultats obtenus
- Donner les formules nécessaires à la compréhension des calculs effectués (par ex. pondération moyenne, facteur de charge).

Bon courage!

Exercice 4

Dimensionnement et exploitation d'un réservoir à buts multiples pour la régulation des apports en eau

Groupe 15

Noms et prénoms :

Introduction

Considérez l'aménagement hydraulique à buts multiples de Lambda en Afrique de l'Ouest, conçu pour réguler les apports du fleuve Bafing-Sénégal. La retenue est prévue pour alimenter des périmètres d'irrigation et une usine hydroélectrique, contribuer au soutien d'étiage et au soutien de crue (pour les usagers en aval), à l'alimentation local en eau et à la protection contre les crues.

Données de base

Données hydrologiques

Apports en eau à la section du barrage sur le fleuve Bafing [hm³]

Années	oct	nov	dec	jan	fev	mar	avr	mai	jun	jul	aou	sep
Humide	1838	847	478	338	267	218	230	403	824	1419	1096	1159
Moyenne	864	430	243	190	159	137	183	307	413	520	757	972
Sèche	455	318	172	141	116	97	137	171	214	332	265	253

- Evaporation sur la retenue :
 - 6 mm/jour (1^{er} juin au 30 novembre)
 - 4 mm/jour (en dehors)

Niveau d'eau moyen en aval : 153.5 m.s.m.

Données d'exploitation

- Prélèvement pour l'irrigation, pour un périmètre irrigué totale initiale de 25'000 ha : 4 m³/h/ha (décembre à mai),
 1 m³/h/ha (ivin à novembre)
 - 1 m³/h/ha (juin à novembre)
- Prélèvement pour soutien d'étiage :
 2 m³/s (décembre à mai)
- Prélèvement pour débit écologique :
 1000 l/s (décembre à mai)
 500 l/s en dehors
- Prélèvement pour eau industrielle du site
 10 m³/j

Données du réservoir

Courbe de stockage

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	1.87394691E+02
a1	3,93926359E-02
a2	-1,59149348E-05
a3	4,69258464E-09
a4	-8,18344516E-13
a5	7.28123126E-17
a6	-2.34419186E-21

- Niveau retenue normal (RN):250.00 m.s.m.
- Niveau minimum d'exploitation (Nm) : 228 m.s.m.

Courbe de surface inondé

A [km ²] = f(N [m.s.m])	Facteur Polynôme
a0	1.29539757E+05
a1	-3.62014713E+03
a2	4.19337504E+01
a3	-2.57434881E-01
a4	8.82628895E-04
a5	-1.60137399E-06
a6	1.20134414E-09

- Cote des plus hautes eaux (PHE) : 253.00 m.s.m.
- Niveau seuil vidange de fond (hyp.):188 m.s.m.

Niveau de la fondation :
 Déversements sur seuil libre :
 A partir de RN

Données de la centrale hydroélectrique

- Type de turbine :Rendement globale des turbinesFrancis0.81
- Nombre de turbines

 I Prix moyen d'électricité

 3 (Q1)

 0.12 EUR / <u>kWh</u>

Exercice

Question 1

Tenant compte des apports en eau estimés pour des années hydrologiques humide, moyenne et sèche, admettant un débit d'équipement de l'usine de 240 m³/s divisé par trois groupes et admettant le niveau d'eau au début de l'année à 245 m.s.m., déterminez pour <u>chaque année hydrologique</u>:

- a) Le volume de déversement sans aucun turbinage (1)
- b) Un planning de turbinage mensuel (nombre de turbines utilisées chaque mois, n = [1,2,3]), afin de le mieux possible :
 - réduire les pertes d'eau (déversements et évaporation)
 - maintenir une production d'énergie >0 pendant les mois d'étiage afin d'assurer une puissance garantie minimale en étiage (les mois d'étiage sont définis comme les mois qui ont des apports en eau < 250 hm³/par mois, qui change si l'année est humide, moyenne ou sèche)
 - obtenir un niveau d'eau à la fin de l'année proche à celui du début
- c) Le volume total d'eau déversé et évaporé (1)
- d) L'énergie totale produite pendant les mois d'étiage et la puissance (1) hydroélectrique garantie en moyenne pendant les mois d'étiage
- e) Le facteur de charge des turbines (j/année ou en %) et le revenu en EUR (1)

Discussion étendue :

- f) Discutez vos plannings (Question 1b) d'un point de vue énergétique, sécuritaire, (6) écologique, sociale et économique
- g) Quels seraient les avantages et les inconvénients d'abaisser de 10 m le niveau de la crête du déversoir libre de l'évacuateur de crues (soit le niveau RN), toute en gardant le même Nm (par rapport aux résultats de la Question 1b) ?

Nous allons maintenant considérer un horizon de planification plus étendu puisque vous êtes confronté-e-s à la situation suivante : On vient de passer une année particulièrement sèche (i-1) et le niveau d'eau au début de l'année (i) est au niveau minimum d'exploitation. Développez un planning pour l'année suivante (i), à considérer comme une année moyenne, tout en vous préparant à une autre année sèche (i+1) à la suite, c.-à-d. en visant un niveau d'eau maximal dans la retenue à la fin de l'année moyenne (i).

- h) Déterminez le planning mensuel pour cette année moyenne tout en (1)
 - réduisant les pertes d'eau (déversements et évaporation) ;
 - maintenant une production d'énergie minimale [n>0] pendant les mois d'étiage ;
- i) Comparez ce planning (Question 1h) au planning établi auparavant pour une année
 (2) moyenne (Question 1b) et discutez les différences tenant compte des cas.

(18)

Question 2

Un projet de pompage-turbinage est envisagé, soit la construction d'un bassin supérieur sur une colline surplombant le réservoir principal.

-	Niveau maximal d'exploitation (RN) du
	bassin supérieur : 535 m.s.m.

-	Niveau minimal	: fixé à 473	m.s.m. (Nm)
---	----------------	--------------	-------------

- Débit de turbinage : 7 m³/s
- Débit de pompage : environ 2/3 du débit de turbinage
- 1 groupe pompe-turbine Francis avec un rendement globale 0.81 (en mode pompage et en mode turbinage)

Courbe de stockage du bassin supérieur

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	4.69111351E+02
a1	3.73769019E+00
a2	1.29616945E-01
a3	-2.13739797E-02
a4	9.57339860E-04
a5	-1.91433659E-05
a6	1.43825677E-07

Vous êtes confronté-e-s à la situation suivante : Le **niveau d'eau** du bassin supérieur **en début de l'année** est à 501 m.s.m., et il s'agit d'une **année humide**. Vous voulez maintenant utiliser le bassin supérieur pour **faire du pompage-turbinage saisonnier**. Cela vous permettra de stocker un éventuel excédent d'eau arrivant pendant les mois de forts apports pour le mettre à disposition plus tard, pendant les mois de plus faibles apports et d'étiage. Ainsi, il sera possible **d'irriguer une surface agricole plus importante** pour répondre à la demande croissante du domaine de l'agriculture. La surface irriguée totale peut donc être optimisée, en étendant les 25'000 ha initiaux, pour atteindre une aire maximale de :

 $A_{max} = 25'000 \text{ ha} + A_{opt avecPT}$

A_opt_avecPT, **constante durant toute l'année**, désigne la surface maximale que vous pourrez irriguer en plus en utilisant du pompage-turbinage saisonnier. Pour les prélèvements d'irrigation il faut compter 4 m³/h/ha de décembre à mai et 1 m³/h/ha de juin à novembre.

- a) Déterminez un planning de turbinage pour la centrale de la retenue principale et de (2) celle de pompage-turbinage (PT) pour le bassin supérieur
 - afin de maximiser A_opt_avecPT,
 - tout en maintenant une production d'énergie minimal [n> 0] durant l'année
 - en réduisant au minimum les déversements
 - et en respectant le niveau minimum des réservoirs à la fin de chaque mois
- b) Déterminez pour le planning établi

(1)

- la surface totale irriguée A_max
- le total de l'énergie produite pendant l'année
- et la puissance hydroélectrique garantie en moyenne toute l'année

- c) Considérez le cas exceptionnel d'une panne technique vous empêchant d'exploiter (2) le bassin supérieur. Il faudra adapter le planning pour la retenue principale en conséquence.
 - Quelle est la surface maximale que vous pourrez irriguer à l'aide de la retenue principale seulement, tout au long d'une année humide, sans pompageturbinage saisonnier?
 - Quelle est donc la surface supplémentaire A_sup qui n'est irrigable que grâce au pompage-turbinage saisonnier ? (A_sup = A_opt_avecPT A_opt_sansPT).

Discussion:

- d) Le bassin supérieur est-il utile à augmenter la surface irrigable durant l'année ? (3) Connaissez-vous d'autres modes d'opération pour une installation de pompage-turbinage dont l'utilité pour notre aménagement à buts multiples pourrait être plus évidente, comparé au P-T saisonnier étudié ?
- e) Quelles sont les plus grandes incertitudes dans la planification de la gestion de l'aménagement hydroélectrique de la retenue principale pour les prochaines décennies ?
- f) Quels sont les avantages et les inconvénients de l'outil Excel mis à disposition ? (2)

Consignes rapport

- Max. 12 pages de contenu (Sans compter page de titre, tables des matières)
- Suivre la structure des questions et sous-questions de l'énoncé dans les rapports et garder cette structure dans votre table de matières
- Pour chaque sous-question fournir un résumé des résultats / valeurs quantitatives sous forme de tableaux, le cas échéant
- Soumettre des réponses quantitatives ainsi que sous forme graphique
- Prévoir des étiquettes/légendes complètes pour tous les figures (axes, unités, ...) et essayez de combiner les diagrammes, si possible.
- Donner brièvement une justification/explication des résultats obtenus
- Donner les formules nécessaires à la compréhension des calculs effectués (par ex. pondération moyenne, facteur de charge).

Bon courage!

Exercice 4

Dimensionnement et exploitation d'un réservoir à buts multiples pour la régulation des apports en eau

Groupe 16

Noms et prénoms :

Introduction

Considérez l'aménagement hydraulique à buts multiples de Lambda en Afrique de l'Ouest, conçu pour réguler les apports du fleuve Bafing-Sénégal. La retenue est prévue pour alimenter des périmètres d'irrigation et une usine hydroélectrique, contribuer au soutien d'étiage et au soutien de crue (pour les usagers en aval), à l'alimentation local en eau et à la protection contre les crues.

Données de base

Données hydrologiques

Apports en eau à la section du barrage sur le fleuve Bafing [hm³]

Années	oct	nov	dec	jan	fev	mar	avr	mai	jun	jul	aou	sep
Humide	1838	847	478	338	267	218	230	403	824	1419	1096	1159
Moyenne	864	430	243	190	159	137	183	307	413	520	757	972
Sèche	455	318	172	141	116	97	137	171	214	332	265	253

• Evaporation sur la retenue :

6 mm/jour (1^{er} juin au 30 novembre)

4 mm/jour (en dehors)

Niveau d'eau moyen en aval :

153.5 m.s.m.

Données d'exploitation

- Prélèvement pour l'irrigation, pour un périmètre irrigué totale initiale de 25'000 ha : 4 m³/h/ha (décembre à mai), 1 m³/h/ha (juin à novembre)
- Prélèvement pour soutien d'étiage :
 2 m³/s (décembre à mai)
- Prélèvement pour débit écologique :
 1000 l/s (décembre à mai)
 500 l/s en dehors
- Prélèvement pour eau industrielle du site
 10 m³/j

Données du réservoir

Courbe de stockage

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	1.87394691E+02
a1	3,93926359E-02
a2	-1,59149348E-05
a3	4,69258464E-09
a4	-8,18344516E-13
a5	7.28123126E-17
a6	-2.34419186E-21

- Niveau retenue normal (RN):250.00 m.s.m.
- Niveau minimum d'exploitation (Nm) : 227 m.s.m.

Courbe de surface inondé

A [km ²] = f(N [m.s.m])	Facteur Polynôme
a0	1.29539757E+05
a1	-3.62014713E+03
a2	4.19337504E+01
a3	-2.57434881E-01
a4	8.82628895E-04
a5	-1.60137399E-06
a6	1.20134414E-09

- Cote des plus hautes eaux (PHE) : 253.00 m.s.m.
- Niveau seuil vidange de fond (hyp.): 188 m.s.m.

- Niveau de la fondation : 170 m.s.m.
- Déversements sur seuil libre :
 A partir de RN

Données de la centrale hydroélectrique

Type de turbine :

Francis

Nombre de turbines

3 (Q1)

Rendement globale des turbines

0.81

Prix moyen d'électricité0.12 EUR / kWh

Exercice

Question 1

Tenant compte des apports en eau estimés pour des années hydrologiques humide, moyenne et sèche, admettant un débit d'équipement de l'usine de 270 m³/s divisé par trois groupes et admettant le niveau d'eau au début de l'année à 245 m.s.m., déterminez pour <u>chaque année hydrologique</u>:

a) Le volume de déversement sans aucun turbinage

(1)

b) Un planning de turbinage mensuel (nombre de turbines utilisées chaque mois,
 n = [1,2,3]), afin de le mieux possible :

- réduire les pertes d'eau (déversements et évaporation)

- maintenir une production d'énergie >0 pendant les mois d'étiage afin d'assurer une puissance garantie minimale en étiage (les mois d'étiage sont définis comme les mois qui ont des apports en eau < 250 hm³/par mois, qui change si l'année est humide, moyenne ou sèche)
- obtenir un niveau d'eau à la fin de l'année proche à celui du début
- c) Le volume total d'eau déversé et évaporé

(1)

- d) L'énergie totale produite pendant les mois d'étiage et la puissance hydroélectrique garantie en moyenne pendant les mois d'étiage
- e) Le facteur de charge des turbines (j/année ou en %) et le revenu en EUR

(1)

(1)

Discussion étendue :

- f) Discutez vos plannings (Question 1b) d'un point de vue énergétique, sécuritaire, écologique, sociale et économique
- g) Quels seraient les avantages et les inconvénients d'abaisser de 10 m le niveau de la crête du déversoir libre de l'évacuateur de crues (soit le niveau RN), toute en gardant le même Nm (par rapport aux résultats de la Question 1b) ?

(6)

Nous allons maintenant considérer un horizon de planification plus étendu puisque vous êtes confronté-e-s à la situation suivante : On vient de passer une année particulièrement sèche (i-1) et le niveau d'eau au début de l'année (i) est au niveau minimum d'exploitation. Développez un planning pour l'année suivante (i), à considérer comme une année moyenne, tout en vous préparant à une autre année sèche (i+1) à la suite, c.-à-d. en visant un niveau d'eau maximal dans la retenue à la fin de l'année moyenne (i).

- h) Déterminez le planning mensuel pour cette année moyenne tout en (1)
 - réduisant les pertes d'eau (déversements et évaporation) ;
 - maintenant une production d'énergie minimale [n>0] pendant les mois d'étiage ;
- i) Comparez ce planning (Question 1h) au planning établi auparavant pour une année
 (2) moyenne (Question 1b) et discutez les différences tenant compte des cas.

(18)

Question 2

Un projet de pompage-turbinage est envisagé, soit la construction d'un bassin supérieur sur une colline surplombant le réservoir principal.

-	Niveau maximal d'exploitation (RN) du
	bassin supérieur : 535 m.s.m.

- Niveau minimal : fixé à 473 m.s.m. (Nm)

- Débit de turbinage : 7 m³/s
- Débit de pompage : environ 2/3 du débit de turbinage
- 1 groupe pompe-turbine Francis avec un rendement globale 0.81 (en mode pompage et en mode turbinage)

Courbe de stockage du bassin supérieur

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	4.69111351E+02
a1	3.73769019E+00
a2	1.29616945E-01
a3	-2.13739797E-02
a4	9.57339860E-04
a5	-1.91433659E-05
a6	1.43825677E-07

Vous êtes confronté-e-s à la situation suivante : Le **niveau d'eau** du bassin supérieur **en début de l'année** est à 506 m.s.m., et il s'agit d'une **année humide**. Vous voulez maintenant utiliser le bassin supérieur pour **faire du pompage-turbinage saisonnier**. Cela vous permettra de stocker un éventuel excédent d'eau arrivant pendant les mois de forts apports pour le mettre à disposition plus tard, pendant les mois de plus faibles apports et d'étiage. Ainsi, il sera possible **d'irriguer une surface agricole plus importante** pour répondre à la demande croissante du domaine de l'agriculture. La surface irriguée totale peut donc être optimisée, en étendant les 25'000 ha initiaux, pour atteindre une aire maximale de :

 $A_{max} = 25'000 \text{ ha} + A_{opt avecPT}$

A_opt_avecPT, **constante durant toute l'année**, désigne la surface maximale que vous pourrez irriguer en plus en utilisant du pompage-turbinage saisonnier. Pour les prélèvements d'irrigation il faut compter 4 m³/h/ha de décembre à mai et 1 m³/h/ha de juin à novembre.

- a) Déterminez un planning de turbinage pour la centrale de la retenue principale et de (2) celle de pompage-turbinage (PT) pour le bassin supérieur
 - afin de maximiser A_opt_avecPT,
 - tout en maintenant une production d'énergie minimal [n> 0] durant l'année
 - en réduisant au minimum les déversements
 - et en respectant le niveau minimum des réservoirs à la fin de chaque mois
- b) Déterminez pour le planning établi

(1)

- la surface totale irriguée A_max
- le total de l'énergie produite pendant l'année
- et la puissance hydroélectrique garantie en moyenne toute l'année

- c) Considérez le cas exceptionnel d'une panne technique vous empêchant d'exploiter (2) le bassin supérieur. Il faudra adapter le planning pour la retenue principale en conséquence.
 - Quelle est la surface maximale que vous pourrez irriguer à l'aide de la retenue principale seulement, tout au long d'une année humide, sans pompageturbinage saisonnier?
 - Quelle est donc la surface supplémentaire A_sup qui n'est irrigable que grâce au pompage-turbinage saisonnier ? (A_sup = A_opt_avecPT A_opt_sansPT).

Discussion:

- d) Le bassin supérieur est-il utile à augmenter la surface irrigable durant l'année ? (3) Connaissez-vous d'autres modes d'opération pour une installation de pompage-turbinage dont l'utilité pour notre aménagement à buts multiples pourrait être plus évidente, comparé au P-T saisonnier étudié ?
- e) Quelles sont les plus grandes incertitudes dans la planification de la gestion de l'aménagement hydroélectrique de la retenue principale pour les prochaines décennies ?
- f) Quels sont les avantages et les inconvénients de l'outil Excel mis à disposition ? (2)

Consignes rapport

- Max. 12 pages de contenu (Sans compter page de titre, tables des matières)
- Suivre la structure des questions et sous-questions de l'énoncé dans les rapports et garder cette structure dans votre table de matières
- Pour chaque sous-question fournir un résumé des résultats / valeurs quantitatives sous forme de tableaux, le cas échéant
- Soumettre des réponses quantitatives ainsi que sous forme graphique
- Prévoir des étiquettes/légendes complètes pour tous les figures (axes, unités, ...) et essayez de combiner les diagrammes, si possible.
- Donner brièvement une justification/explication des résultats obtenus
- Donner les formules nécessaires à la compréhension des calculs effectués (par ex. pondération moyenne, facteur de charge).

Bon courage!

Exercice 4

Dimensionnement et exploitation d'un réservoir à buts multiples pour la régulation des apports en eau

Groupe 17

Noms et prénoms :

Introduction

Considérez l'aménagement hydraulique à buts multiples de Lambda en Afrique de l'Ouest, conçu pour réguler les apports du fleuve Bafing-Sénégal. La retenue est prévue pour alimenter des périmètres d'irrigation et une usine hydroélectrique, contribuer au soutien d'étiage et au soutien de crue (pour les usagers en aval), à l'alimentation local en eau et à la protection contre les crues.

Données de base

Données hydrologiques

Apports en eau à la section du barrage sur le fleuve Bafing [hm³]

Années	oct	nov	dec	jan	fev	mar	avr	mai	jun	jul	aou	sep
Humide	1838	847	478	338	267	218	230	403	824	1419	1096	1159
Moyenne	864	430	243	190	159	137	183	307	413	520	757	972
Sèche	455	318	172	141	116	97	137	171	214	332	265	253

• Evaporation sur la retenue :

6 mm/jour (1^{er} juin au 30 novembre)

4 mm/jour (en dehors)

Niveau d'eau moyen en aval :

153.5 m.s.m.

Données d'exploitation

- Prélèvement pour l'irrigation, pour un périmètre irrigué totale initiale de 25'000 ha : 4 m³/h/ha (décembre à mai), 1 m³/h/ha (juin à novembre)
- Prélèvement pour soutien d'étiage :
 2 m³/s (décembre à mai)
- Prélèvement pour débit écologique :
 1000 l/s (décembre à mai)
 500 l/s en dehors
- Prélèvement pour eau industrielle du site
 10 m³/j

Données du réservoir

Courbe de stockage

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	1.87394691E+02
a1	3,93926359E-02
a2	-1,59149348E-05
a3	4,69258464E-09
a4	-8,18344516E-13
a5	7.28123126E-17
a6	-2.34419186E-21

- Niveau retenue normal (RN):250.00 m.s.m.
- Niveau minimum d'exploitation (Nm) : 227 m.s.m.

Courbe de surface inondé

A [km ²] = f(N [m.s.m])	Facteur Polynôme
a0	1.29539757E+05
a1	-3.62014713E+03
a2	4.19337504E+01
a3	-2.57434881E-01
a4	8.82628895E-04
a5	-1.60137399E-06
a6	1.20134414E-09

- Cote des plus hautes eaux (PHE) : 253.00 m.s.m.
- Niveau seuil vidange de fond (hyp.): 188 m.s.m.

Niveau de la fondation :
 Déversements sur seuil libre :
 A partir de RN

Données de la centrale hydroélectrique

- Type de turbine : Rendement globale des turbinesFrancis 0.81
- Nombre de turbines
 Prix moyen d'électricité
 3 (Q1)

 0.12 EUR / <u>kWh</u>

Exercice

Question 1

Tenant compte des apports en eau estimés pour des années hydrologiques humide, moyenne et sèche, admettant un débit d'équipement de l'usine de 255 m³/s divisé par trois groupes et admettant le niveau d'eau au début de l'année à 245 m.s.m., déterminez pour <u>chaque année hydrologique</u>:

- a) Le volume de déversement sans aucun turbinage (1)
- b) Un planning de turbinage mensuel (nombre de turbines utilisées chaque mois, n = [1,2,3]), afin de le mieux possible :
 - réduire les pertes d'eau (déversements et évaporation)
 - maintenir une production d'énergie >0 pendant les mois d'étiage afin d'assurer une puissance garantie minimale en étiage (les mois d'étiage sont définis comme les mois qui ont des apports en eau < 250 hm³/par mois, qui change si l'année est humide, moyenne ou sèche)
 - obtenir un niveau d'eau à la fin de l'année proche à celui du début
- c) Le volume total d'eau déversé et évaporé (1)
- d) L'énergie totale produite pendant les mois d'étiage et la puissance (1) hydroélectrique garantie en moyenne pendant les mois d'étiage
- e) Le facteur de charge des turbines (j/année ou en %) et le revenu en EUR (1)

Discussion étendue :

- f) Discutez vos plannings (Question 1b) d'un point de vue énergétique, sécuritaire, (6) écologique, sociale et économique
- g) Quels seraient les avantages et les inconvénients d'abaisser de 10 m le niveau de la crête du déversoir libre de l'évacuateur de crues (soit le niveau RN), toute en gardant le même Nm (par rapport aux résultats de la Question 1b) ?

Nous allons maintenant considérer un horizon de planification plus étendu puisque vous êtes confronté-e-s à la situation suivante : On vient de passer une année particulièrement sèche (i-1) et le niveau d'eau au début de l'année (i) est au niveau minimum d'exploitation. Développez un planning pour l'année suivante (i), à considérer comme une année moyenne, tout en vous préparant à une autre année sèche (i+1) à la suite, c.-à-d. en visant un niveau d'eau maximal dans la retenue à la fin de l'année moyenne (i).

- h) Déterminez le planning mensuel pour cette année moyenne tout en (1)
 - réduisant les pertes d'eau (déversements et évaporation) ;
 - maintenant une production d'énergie minimale [n>0] pendant les mois d'étiage ;
- i) Comparez ce planning (Question 1h) au planning établi auparavant pour une année
 (2) moyenne (Question 1b) et discutez les différences tenant compte des cas.

(18)

Question 2

Un projet de pompage-turbinage est envisagé, soit la construction d'un bassin supérieur sur une colline surplombant le réservoir principal.

-	Niveau maximal d'exploitation (RN) du
	bassin supérieur : 530 m.s.m.

- Niveau minimal : fixé à 473 m.s.m. (N	۱m)
---	-----

- Débit de turbinage : 7 m³/s

 Débit de pompage : environ 2/3 du débit de turbinage

 1 groupe pompe-turbine Francis avec un rendement globale 0.81 (en mode pompage et en mode turbinage)

Courbe de stockage du bassin supérieur

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	4.69111351E+02
a1	3.73769019E+00
a2	1.29616945E-01
a3	-2.13739797E-02
a4	9.57339860E-04
a5	-1.91433659E-05
a6	1.43825677E-07

Vous êtes confronté-e-s à la situation suivante : Le **niveau d'eau** du bassin supérieur **en début de l'année** est à 505 m.s.m., et il s'agit d'une **année humide**. Vous voulez maintenant utiliser le bassin supérieur pour **faire du pompage-turbinage saisonnier**. Cela vous permettra de stocker un éventuel excédent d'eau arrivant pendant les mois de forts apports pour le mettre à disposition plus tard, pendant les mois de plus faibles apports et d'étiage. Ainsi, il sera possible **d'irriguer une surface agricole plus importante** pour répondre à la demande croissante du domaine de l'agriculture. La surface irriguée totale peut donc être optimisée, en étendant les 25'000 ha initiaux, pour atteindre une aire maximale de :

 $A_{max} = 25'000 \text{ ha} + A_{opt avecPT}$

A_opt_avecPT, **constante durant toute l'année**, désigne la surface maximale que vous pourrez irriguer en plus en utilisant du pompage-turbinage saisonnier. Pour les prélèvements d'irrigation il faut compter 4 m³/h/ha de décembre à mai et 1 m³/h/ha de juin à novembre.

- a) Déterminez un planning de turbinage pour la centrale de la retenue principale et de (2) celle de pompage-turbinage (PT) pour le bassin supérieur
 - afin de maximiser A_opt_avecPT,
 - tout en maintenant une production d'énergie minimal [n> 0] durant l'année
 - en réduisant au minimum les déversements
 - et en respectant le niveau minimum des réservoirs à la fin de chaque mois
- b) Déterminez pour le planning établi

(1)

- la surface totale irriguée A_max
- le total de l'énergie produite pendant l'année
- et la puissance hydroélectrique garantie en moyenne toute l'année

- c) Considérez le cas exceptionnel d'une panne technique vous empêchant d'exploiter (2) le bassin supérieur. Il faudra adapter le planning pour la retenue principale en conséquence.
 - Quelle est la surface maximale que vous pourrez irriguer à l'aide de la retenue principale seulement, tout au long d'une année humide, sans pompageturbinage saisonnier?
 - Quelle est donc la surface supplémentaire A_sup qui n'est irrigable que grâce au pompage-turbinage saisonnier ? (A_sup = A_opt_avecPT A_opt_sansPT).

Discussion:

- d) Le bassin supérieur est-il utile à augmenter la surface irrigable durant l'année ? (3) Connaissez-vous d'autres modes d'opération pour une installation de pompage-turbinage dont l'utilité pour notre aménagement à buts multiples pourrait être plus évidente, comparé au P-T saisonnier étudié ?
- e) Quelles sont les plus grandes incertitudes dans la planification de la gestion de l'aménagement hydroélectrique de la retenue principale pour les prochaines décennies ?
- f) Quels sont les avantages et les inconvénients de l'outil Excel mis à disposition ? (2)

Consignes rapport

- Max. 12 pages de contenu (Sans compter page de titre, tables des matières)
- Suivre la structure des questions et sous-questions de l'énoncé dans les rapports et garder cette structure dans votre table de matières
- Pour chaque sous-question fournir un résumé des résultats / valeurs quantitatives sous forme de tableaux, le cas échéant
- Soumettre des réponses quantitatives ainsi que sous forme graphique
- Prévoir des étiquettes/légendes complètes pour tous les figures (axes, unités, ...) et essayez de combiner les diagrammes, si possible.
- Donner brièvement une justification/explication des résultats obtenus
- Donner les formules nécessaires à la compréhension des calculs effectués (par ex. pondération moyenne, facteur de charge).

Bon courage!

Exercice 4

Dimensionnement et exploitation d'un réservoir à buts multiples pour la régulation des apports en eau

Groupe 18

Noms et prénoms :

Introduction

Considérez l'aménagement hydraulique à buts multiples de Lambda en Afrique de l'Ouest, conçu pour réguler les apports du fleuve Bafing-Sénégal. La retenue est prévue pour alimenter des périmètres d'irrigation et une usine hydroélectrique, contribuer au soutien d'étiage et au soutien de crue (pour les usagers en aval), à l'alimentation local en eau et à la protection contre les crues.

Données de base

Données hydrologiques

Apports en eau à la section du barrage sur le fleuve Bafing [hm³]

Années	oct	nov	dec	jan	fev	mar	avr	mai	jun	jul	aou	sep
Humide	1838	847	478	338	267	218	230	403	824	1419	1096	1159
Moyenne	864	430	243	190	159	137	183	307	413	520	757	972
Sèche	455	318	172	141	116	97	137	171	214	332	265	253

- Evaporation sur la retenue :
 - 6 mm/jour (1^{er} juin au 30 novembre)
 - 4 mm/jour (en dehors)

Niveau d'eau moyen en aval : 153.5 m.s.m.

Données d'exploitation

- Prélèvement pour l'irrigation, pour un périmètre irrigué totale initiale de 25'000 ha : 4 m³/h/ha (décembre à mai),
 1 m³/h/ha (ivin à novembre)
 - 1 m³/h/ha (juin à novembre)
- Prélèvement pour soutien d'étiage :
 2 m³/s (décembre à mai)
- Prélèvement pour débit écologique :
 1000 l/s (décembre à mai)
 500 l/s en dehors
- Prélèvement pour eau industrielle du site
 10 m³/j

Données du réservoir

Courbe de stockage

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	1.87394691E+02
a1	3,93926359E-02
a2	-1,59149348E-05
a3	4,69258464E-09
a4	-8,18344516E-13
a5	7.28123126E-17
a6	-2.34419186E-21

- Niveau retenue normal (RN):250.00 m.s.m.
- Niveau minimum d'exploitation (Nm) : 228 m.s.m.

Courbe de surface inondé

A [km ²] = f(N [m.s.m])	Facteur Polynôme
a0	1.29539757E+05
a1	-3.62014713E+03
a2	4.19337504E+01
a3	-2.57434881E-01
a4	8.82628895E-04
a5	-1.60137399E-06
a6	1.20134414E-09

- Cote des plus hautes eaux (PHE) : 253.00 m.s.m.
- Niveau seuil vidange de fond (hyp.):188 m.s.m.

- Niveau de la fondation : 170 m.s.m.
- Déversements sur seuil libre :
 A partir de RN

Données de la centrale hydroélectrique

Type de turbine :

Francis

Nombre de turbines

3 (Q1)

Rendement globale des turbines

0.81

Prix moyen d'électricité0.12 EUR / kWh

Exercice

Question 1

Tenant compte des apports en eau estimés pour des années hydrologiques humide, moyenne et sèche, admettant un débit d'équipement de l'usine de 270 m³/s divisé par trois groupes et admettant le niveau d'eau au début de l'année à 245 m.s.m., déterminez pour <u>chaque année hydrologique</u>:

a) Le volume de déversement sans aucun turbinage

(1)

b) Un planning de turbinage mensuel (nombre de turbines utilisées chaque mois,
 n = [1,2,3]), afin de le mieux possible :

- réduire les pertes d'eau (déversements et évaporation)

- maintenir une production d'énergie >0 pendant les mois d'étiage afin d'assurer une puissance garantie minimale en étiage (les mois d'étiage sont définis comme les mois qui ont des apports en eau < 250 hm³/par mois, qui change si l'année est humide, moyenne ou sèche)
- obtenir un niveau d'eau à la fin de l'année proche à celui du début
- c) Le volume total d'eau déversé et évaporé

(1)

- d) L'énergie totale produite pendant les mois d'étiage et la puissance hydroélectrique garantie en moyenne pendant les mois d'étiage
- e) Le facteur de charge des turbines (j/année ou en %) et le revenu en EUR

(1)

(1)

Discussion étendue :

- f) Discutez vos plannings (Question 1b) d'un point de vue énergétique, sécuritaire, écologique, sociale et économique
- g) Quels seraient les avantages et les inconvénients d'abaisser de 10 m le niveau de la crête du déversoir libre de l'évacuateur de crues (soit le niveau RN), toute en gardant le même Nm (par rapport aux résultats de la Question 1b) ?

(6)

Nous allons maintenant considérer un horizon de planification plus étendu puisque vous êtes confronté-e-s à la situation suivante : On vient de passer une année particulièrement sèche (i-1) et le niveau d'eau au début de l'année (i) est au niveau minimum d'exploitation. Développez un planning pour l'année suivante (i), à considérer comme une année moyenne, tout en vous préparant à une autre année sèche (i+1) à la suite, c.-à-d. en visant un niveau d'eau maximal dans la retenue à la fin de l'année moyenne (i).

- h) Déterminez le planning mensuel pour cette année moyenne tout en (1)
 - réduisant les pertes d'eau (déversements et évaporation) ;
 - maintenant une production d'énergie minimale [n>0] pendant les mois d'étiage ;
- i) Comparez ce planning (Question 1h) au planning établi auparavant pour une année
 (2) moyenne (Question 1b) et discutez les différences tenant compte des cas.

(18)

Question 2

Un projet de pompage-turbinage est envisagé, soit la construction d'un bassin supérieur sur une colline surplombant le réservoir principal.

-	Niveau maximal d'exploitation (RN) du
	bassin supérieur : 530 m.s.m.

- Niveau minimal : fixé à 473 m.s.m. (N	۱m)
---	-----

- Débit de turbinage : 7 m³/s

 Débit de pompage : environ 2/3 du débit de turbinage

- 1 groupe pompe-turbine Francis avec un rendement globale 0.81 (en mode pompage et en mode turbinage)

Courbe de stockage du bassin supérieur

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	4.69111351E+02
a1	3.73769019E+00
a2	1.29616945E-01
a3	-2.13739797E-02
a4	9.57339860E-04
a5	-1.91433659E-05
a6	1.43825677E-07

Vous êtes confronté-e-s à la situation suivante : Le **niveau d'eau** du bassin supérieur **en début de l'année** est à 504 m.s.m., et il s'agit d'une **année humide**. Vous voulez maintenant utiliser le bassin supérieur pour **faire du pompage-turbinage saisonnier**. Cela vous permettra de stocker un éventuel excédent d'eau arrivant pendant les mois de forts apports pour le mettre à disposition plus tard, pendant les mois de plus faibles apports et d'étiage. Ainsi, il sera possible **d'irriguer une surface agricole plus importante** pour répondre à la demande croissante du domaine de l'agriculture. La surface irriguée totale peut donc être optimisée, en étendant les 25'000 ha initiaux, pour atteindre une aire maximale de :

 $A_{max} = 25'000 \text{ ha} + A_{opt avecPT}$

A_opt_avecPT, **constante durant toute l'année**, désigne la surface maximale que vous pourrez irriguer en plus en utilisant du pompage-turbinage saisonnier. Pour les prélèvements d'irrigation il faut compter 4 m³/h/ha de décembre à mai et 1 m³/h/ha de juin à novembre.

- a) Déterminez un planning de turbinage pour la centrale de la retenue principale et de (2) celle de pompage-turbinage (PT) pour le bassin supérieur
 - afin de maximiser A_opt_avecPT,
 - tout en maintenant une production d'énergie minimal [n> 0] durant l'année
 - en réduisant au minimum les déversements
 - et en respectant le niveau minimum des réservoirs à la fin de chaque mois
- b) Déterminez pour le planning établi

(1)

- la surface totale irriguée A_max
- le total de l'énergie produite pendant l'année
- et la puissance hydroélectrique garantie en moyenne toute l'année

- c) Considérez le cas exceptionnel d'une panne technique vous empêchant d'exploiter (2) le bassin supérieur. Il faudra adapter le planning pour la retenue principale en conséquence.
 - Quelle est la surface maximale que vous pourrez irriguer à l'aide de la retenue principale seulement, tout au long d'une année humide, sans pompageturbinage saisonnier?
 - Quelle est donc la surface supplémentaire A_sup qui n'est irrigable que grâce au pompage-turbinage saisonnier ? (A_sup = A_opt_avecPT A_opt_sansPT).

Discussion:

- d) Le bassin supérieur est-il utile à augmenter la surface irrigable durant l'année ? (3) Connaissez-vous d'autres modes d'opération pour une installation de pompage-turbinage dont l'utilité pour notre aménagement à buts multiples pourrait être plus évidente, comparé au P-T saisonnier étudié ?
- e) Quelles sont les plus grandes incertitudes dans la planification de la gestion de l'aménagement hydroélectrique de la retenue principale pour les prochaines décennies ?
- f) Quels sont les avantages et les inconvénients de l'outil Excel mis à disposition ? (2)

Consignes rapport

- Max. 12 pages de contenu (Sans compter page de titre, tables des matières)
- Suivre la structure des questions et sous-questions de l'énoncé dans les rapports et garder cette structure dans votre table de matières
- Pour chaque sous-question fournir un résumé des résultats / valeurs quantitatives sous forme de tableaux, le cas échéant
- Soumettre des réponses quantitatives ainsi que sous forme graphique
- Prévoir des étiquettes/légendes complètes pour tous les figures (axes, unités, ...) et essayez de combiner les diagrammes, si possible.
- Donner brièvement une justification/explication des résultats obtenus
- Donner les formules nécessaires à la compréhension des calculs effectués (par ex. pondération moyenne, facteur de charge).

Bon courage!

Exercice 4

Dimensionnement et exploitation d'un réservoir à buts multiples pour la régulation des apports en eau

Groupe 19

Noms et prénoms :

Introduction

Considérez l'aménagement hydraulique à buts multiples de Lambda en Afrique de l'Ouest, conçu pour réguler les apports du fleuve Bafing-Sénégal. La retenue est prévue pour alimenter des périmètres d'irrigation et une usine hydroélectrique, contribuer au soutien d'étiage et au soutien de crue (pour les usagers en aval), à l'alimentation local en eau et à la protection contre les crues.

Données de base

Données hydrologiques

Apports en eau à la section du barrage sur le fleuve Bafing [hm³]

Années	oct	nov	dec	jan	fev	mar	avr	mai	jun	jul	aou	sep
Humide	1838	847	478	338	267	218	230	403	824	1419	1096	1159
Moyenne	864	430	243	190	159	137	183	307	413	520	757	972
Sèche	455	318	172	141	116	97	137	171	214	332	265	253

Evaporation sur la retenue :

6 mm/jour (1^{er} juin au 30 novembre)

4 mm/jour (en dehors)

Niveau d'eau moyen en aval:

153.5 m.s.m.

Données d'exploitation

- Prélèvement pour l'irrigation, pour un périmètre irrigué totale initiale de 25'000 ha: 4 m³/h/ha (décembre à mai), 1 m³/h/ha (juin à novembre)
- Prélèvement pour soutien d'étiage :
- 2 m³/s (décembre à mai)
- Prélèvement pour débit écologique : 1000 l/s (décembre à mai) 500 l/s en dehors
- Prélèvement pour eau industrielle du site $10 \text{ m}^3/\text{j}$

Données du réservoir

Courbe de stockage

Facteur Polynôme
1.87394691E+02
3,93926359E-02
-1,59149348E-05
4,69258464E-09
-8,18344516E-13
7.28123126E-17
-2.34419186E-21

- Niveau retenue normal (RN) : 250.00 m.s.m.
- Niveau minimum d'exploitation (Nm) : 226 m.s.m.

Courbe de surface inondé

A [km²] = f(N [m.s.m])	Facteur Polynôme
a0	1.29539757E+05
a1	-3.62014713E+03
a2	4.19337504E+01
a3	-2.57434881E-01
a4	8.82628895E-04
a5	-1.60137399E-06
a6	1.20134414E-09

- Cote des plus hautes eaux (PHE) : 253.00 m.s.m.
- Niveau seuil vidange de fond (hyp.): 188 m.s.m.

Niveau de la fondation :
 Déversements sur seuil libre :
 A partir de RN

Données de la centrale hydroélectrique

- Type de turbine : Rendement globale des turbinesFrancis 0.81
- Nombre de turbines
 Prix moyen d'électricité
 3 (Q1)

 0.12 EUR / <u>kWh</u>

Exercice

Question 1

Tenant compte des apports en eau estimés pour des années hydrologiques humide, moyenne et sèche, admettant un débit d'équipement de l'usine de 255 m³/s divisé par trois groupes et admettant le niveau d'eau au début de l'année à 245 m.s.m., déterminez pour <u>chaque année hydrologique</u>:

- a) Le volume de déversement sans aucun turbinage (1)
- b) Un planning de turbinage mensuel (nombre de turbines utilisées chaque mois, n = [1,2,3]), afin de le mieux possible :
 - réduire les pertes d'eau (déversements et évaporation)
 - maintenir une production d'énergie >0 pendant les mois d'étiage afin d'assurer une puissance garantie minimale en étiage (les mois d'étiage sont définis comme les mois qui ont des apports en eau < 250 hm³/par mois, qui change si l'année est humide, moyenne ou sèche)
 - obtenir un niveau d'eau à la fin de l'année proche à celui du début
- c) Le volume total d'eau déversé et évaporé (1)
- d) L'énergie totale produite pendant les mois d'étiage et la puissance (1) hydroélectrique garantie en moyenne pendant les mois d'étiage
- e) Le facteur de charge des turbines (j/année ou en %) et le revenu en EUR (1)

Discussion étendue :

- f) Discutez vos plannings (Question 1b) d'un point de vue énergétique, sécuritaire, (6) écologique, sociale et économique
- g) Quels seraient les avantages et les inconvénients d'abaisser de 10 m le niveau de la crête du déversoir libre de l'évacuateur de crues (soit le niveau RN), toute en gardant le même Nm (par rapport aux résultats de la Question 1b) ?

Nous allons maintenant considérer un horizon de planification plus étendu puisque vous êtes confronté-e-s à la situation suivante : On vient de passer une année particulièrement sèche (i-1) et le niveau d'eau au début de l'année (i) est au niveau minimum d'exploitation. Développez un planning pour l'année suivante (i), à considérer comme une année moyenne, tout en vous préparant à une autre année sèche (i+1) à la suite, c.-à-d. en visant un niveau d'eau maximal dans la retenue à la fin de l'année moyenne (i).

- h) Déterminez le planning mensuel pour cette année moyenne tout en (1)
 - réduisant les pertes d'eau (déversements et évaporation) ;
 - maintenant une production d'énergie minimale [n>0] pendant les mois d'étiage ;
- i) Comparez ce planning (Question 1h) au planning établi auparavant pour une année
 (2) moyenne (Question 1b) et discutez les différences tenant compte des cas.

(18)

Question 2

Un projet de pompage-turbinage est envisagé, soit la construction d'un bassin supérieur sur une colline surplombant le réservoir principal.

-	Niveau maximal d'exploitation (RN) du
	bassin supérieur : 530 m.s.m.

-	Niveau	minimal	: fixé à 47	3 m.s.m.	(Nm)
---	--------	---------	-------------	----------	------

- Débit de turbinage : 7 m³/s

 Débit de pompage : environ 2/3 du débit de turbinage

- 1 groupe pompe-turbine Francis avec un rendement globale 0.81 (en mode pompage et en mode turbinage)

Courbe de stockage du bassin supérieur

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	4.69111351E+02
a1	3.73769019E+00
a2	1.29616945E-01
a3	-2.13739797E-02
a4	9.57339860E-04
a5	-1.91433659E-05
a6	1.43825677E-07

Vous êtes confronté-e-s à la situation suivante : Le **niveau d'eau** du bassin supérieur **en début de l'année** est à 509 m.s.m., et il s'agit d'une **année humide**. Vous voulez maintenant utiliser le bassin supérieur pour **faire du pompage-turbinage saisonnier**. Cela vous permettra de stocker un éventuel excédent d'eau arrivant pendant les mois de forts apports pour le mettre à disposition plus tard, pendant les mois de plus faibles apports et d'étiage. Ainsi, il sera possible **d'irriguer une surface agricole plus importante** pour répondre à la demande croissante du domaine de l'agriculture. La surface irriguée totale peut donc être optimisée, en étendant les 25'000 ha initiaux, pour atteindre une aire maximale de :

 $A_{max} = 25'000 \text{ ha} + A_{opt avecPT}$

A_opt_avecPT, **constante durant toute l'année**, désigne la surface maximale que vous pourrez irriguer en plus en utilisant du pompage-turbinage saisonnier. Pour les prélèvements d'irrigation il faut compter 4 m³/h/ha de décembre à mai et 1 m³/h/ha de juin à novembre.

- a) Déterminez un planning de turbinage pour la centrale de la retenue principale et de (2) celle de pompage-turbinage (PT) pour le bassin supérieur
 - afin de maximiser A_opt_avecPT,
 - tout en maintenant une production d'énergie minimal [n> 0] durant l'année
 - en réduisant au minimum les déversements
 - et en respectant le niveau minimum des réservoirs à la fin de chaque mois
- b) Déterminez pour le planning établi

(1)

- la surface totale irriguée A_max
- le total de l'énergie produite pendant l'année
- et la puissance hydroélectrique garantie en moyenne toute l'année

- c) Considérez le cas exceptionnel d'une panne technique vous empêchant d'exploiter (2) le bassin supérieur. Il faudra adapter le planning pour la retenue principale en conséquence.
 - Quelle est la surface maximale que vous pourrez irriguer à l'aide de la retenue principale seulement, tout au long d'une année humide, sans pompageturbinage saisonnier?
 - Quelle est donc la surface supplémentaire A_sup qui n'est irrigable que grâce au pompage-turbinage saisonnier ? (A_sup = A_opt_avecPT A_opt_sansPT).

Discussion:

- d) Le bassin supérieur est-il utile à augmenter la surface irrigable durant l'année ? (3) Connaissez-vous d'autres modes d'opération pour une installation de pompage-turbinage dont l'utilité pour notre aménagement à buts multiples pourrait être plus évidente, comparé au P-T saisonnier étudié ?
- e) Quelles sont les plus grandes incertitudes dans la planification de la gestion de l'aménagement hydroélectrique de la retenue principale pour les prochaines décennies ?
- f) Quels sont les avantages et les inconvénients de l'outil Excel mis à disposition ? (2)

Consignes rapport

- Max. 12 pages de contenu (Sans compter page de titre, tables des matières)
- Suivre la structure des questions et sous-questions de l'énoncé dans les rapports et garder cette structure dans votre table de matières
- Pour chaque sous-question fournir un résumé des résultats / valeurs quantitatives sous forme de tableaux, le cas échéant
- Soumettre des réponses quantitatives ainsi que sous forme graphique
- Prévoir des étiquettes/légendes complètes pour tous les figures (axes, unités, ...) et essayez de combiner les diagrammes, si possible.
- Donner brièvement une justification/explication des résultats obtenus
- Donner les formules nécessaires à la compréhension des calculs effectués (par ex. pondération moyenne, facteur de charge).

Bon courage!

Exercice 4

Dimensionnement et exploitation d'un réservoir à buts multiples pour la régulation des apports en eau

Groupe 20

Noms et prénoms :

Introduction

Considérez l'aménagement hydraulique à buts multiples de Lambda en Afrique de l'Ouest, conçu pour réguler les apports du fleuve Bafing-Sénégal. La retenue est prévue pour alimenter des périmètres d'irrigation et une usine hydroélectrique, contribuer au soutien d'étiage et au soutien de crue (pour les usagers en aval), à l'alimentation local en eau et à la protection contre les crues.

Données de base

Données hydrologiques

Apports en eau à la section du barrage sur le fleuve Bafing [hm³]

Années	oct	nov	dec	jan	fev	mar	avr	mai	jun	jul	aou	sep
Humide	1838	847	478	338	267	218	230	403	824	1419	1096	1159
Moyenne	864	430	243	190	159	137	183	307	413	520	757	972
Sèche	455	318	172	141	116	97	137	171	214	332	265	253

- Evaporation sur la retenue :
 - 6 mm/jour (1^{er} juin au 30 novembre)
 - 4 mm/jour (en dehors)

Niveau d'eau moyen en aval : 153.5 m.s.m.

Données d'exploitation

- Prélèvement pour l'irrigation, pour un périmètre irrigué totale initiale de 25'000 ha : 4 m³/h/ha (décembre à mai),
 - 1 m³/h/ha (juin à novembre)
- Prélèvement pour soutien d'étiage :
 2 m³/s (décembre à mai)
- Prélèvement pour débit écologique :
 1000 l/s (décembre à mai)
 500 l/s en dehors
- Prélèvement pour eau industrielle du site
 10 m³/j

Données du réservoir

Courbe de stockage

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	1.87394691E+02
a1	3,93926359E-02
a2	-1,59149348E-05
a3	4,69258464E-09
a4	-8,18344516E-13
a5	7.28123126E-17
a6	-2.34419186E-21

- Niveau retenue normal (RN):250.00 m.s.m.
- Niveau minimum d'exploitation (Nm) : 225 m.s.m.

Courbe de surface inondé

A [km²] = f(N [m.s.m])	Facteur Polynôme
a0	1.29539757E+05
a1	-3.62014713E+03
a2	4.19337504E+01
a3	-2.57434881E-01
a4	8.82628895E-04
a5	-1.60137399E-06
a6	1.20134414E-09

- Cote des plus hautes eaux (PHE) : 253.00 m.s.m.
- Niveau seuil vidange de fond (hyp.): 188 m.s.m.

- Niveau de la fondation : 170 m.s.m.
- Déversements sur seuil libre :
 A partir de RN

Données de la centrale hydroélectrique

Type de turbine :

Francis

Nombre de turbines

3 (Q1)

Rendement globale des turbines

0.81

Prix moyen d'électricité0.12 EUR / kWh

Exercice

Question 1

Tenant compte des apports en eau estimés pour des années hydrologiques humide, moyenne et sèche, admettant un débit d'équipement de l'usine de 270 m³/s divisé par trois groupes et admettant le niveau d'eau au début de l'année à 245 m.s.m., déterminez pour <u>chaque année hydrologique</u>:

a) Le volume de déversement sans aucun turbinage

(1)

b) Un planning de turbinage mensuel (nombre de turbines utilisées chaque mois,
 n = [1,2,3]), afin de le mieux possible :

- réduire les pertes d'eau (déversements et évaporation)

- maintenir une production d'énergie >0 pendant les mois d'étiage afin d'assurer une puissance garantie minimale en étiage (les mois d'étiage sont définis comme les mois qui ont des apports en eau < 250 hm³/par mois, qui change si l'année est humide, moyenne ou sèche)
- obtenir un niveau d'eau à la fin de l'année proche à celui du début
- c) Le volume total d'eau déversé et évaporé

(1)

- d) L'énergie totale produite pendant les mois d'étiage et la puissance hydroélectrique garantie en moyenne pendant les mois d'étiage
- e) Le facteur de charge des turbines (j/année ou en %) et le revenu en EUR

(1)

(1)

Discussion étendue :

- f) Discutez vos plannings (Question 1b) d'un point de vue énergétique, sécuritaire, écologique, sociale et économique
- g) Quels seraient les avantages et les inconvénients d'abaisser de 10 m le niveau de la crête du déversoir libre de l'évacuateur de crues (soit le niveau RN), toute en gardant le même Nm (par rapport aux résultats de la Question 1b) ?

(6)

Nous allons maintenant considérer un horizon de planification plus étendu puisque vous êtes confronté-e-s à la situation suivante : On vient de passer une année particulièrement sèche (i-1) et le niveau d'eau au début de l'année (i) est au niveau minimum d'exploitation. Développez un planning pour l'année suivante (i), à considérer comme une année moyenne, tout en vous préparant à une autre année sèche (i+1) à la suite, c.-à-d. en visant un niveau d'eau maximal dans la retenue à la fin de l'année moyenne (i).

- h) Déterminez le planning mensuel pour cette année moyenne tout en (1)
 - réduisant les pertes d'eau (déversements et évaporation) ;
 - maintenant une production d'énergie minimale [n>0] pendant les mois d'étiage ;
- i) Comparez ce planning (Question 1h) au planning établi auparavant pour une année
 (2) moyenne (Question 1b) et discutez les différences tenant compte des cas.

(18)

Question 2

Un projet de pompage-turbinage est envisagé, soit la construction d'un bassin supérieur sur une colline surplombant le réservoir principal.

-	Niveau maximal d'exploitation (RN) du
	bassin supérieur : 525 m.s.m.

-	Niveau	minimal	: fixé	à 473	m.s.m.	(Nm)
---	--------	---------	--------	-------	--------	------

- Débit de turbinage : 7 m³/s

 Débit de pompage : environ 2/3 du débit de turbinage

 1 groupe pompe-turbine Francis avec un rendement globale 0.81 (en mode pompage et en mode turbinage)

Courbe de stockage du bassin supérieur

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	4.69111351E+02
a1	3.73769019E+00
a2	1.29616945E-01
a3	-2.13739797E-02
a4	9.57339860E-04
a5	-1.91433659E-05
a6	1.43825677E-07

Vous êtes confronté-e-s à la situation suivante : Le **niveau d'eau** du bassin supérieur **en début de l'année** est à 508 m.s.m., et il s'agit d'une **année humide**. Vous voulez maintenant utiliser le bassin supérieur pour **faire du pompage-turbinage saisonnier**. Cela vous permettra de stocker un éventuel excédent d'eau arrivant pendant les mois de forts apports pour le mettre à disposition plus tard, pendant les mois de plus faibles apports et d'étiage. Ainsi, il sera possible **d'irriguer une surface agricole plus importante** pour répondre à la demande croissante du domaine de l'agriculture. La surface irriguée totale peut donc être optimisée, en étendant les 25'000 ha initiaux, pour atteindre une aire maximale de :

 $A_{max} = 25'000 \text{ ha} + A_{opt avecPT}$

A_opt_avecPT, **constante durant toute l'année**, désigne la surface maximale que vous pourrez irriguer en plus en utilisant du pompage-turbinage saisonnier. Pour les prélèvements d'irrigation il faut compter 4 m³/h/ha de décembre à mai et 1 m³/h/ha de juin à novembre.

- a) Déterminez un planning de turbinage pour la centrale de la retenue principale et de (2) celle de pompage-turbinage (PT) pour le bassin supérieur
 - afin de maximiser A_opt_avecPT,
 - tout en maintenant une production d'énergie minimal [n> 0] durant l'année
 - en réduisant au minimum les déversements
 - et en respectant le niveau minimum des réservoirs à la fin de chaque mois
- b) Déterminez pour le planning établi

(1)

- la surface totale irriguée A_max
- le total de l'énergie produite pendant l'année
- et la puissance hydroélectrique garantie en moyenne toute l'année

- c) Considérez le cas exceptionnel d'une panne technique vous empêchant d'exploiter (2) le bassin supérieur. Il faudra adapter le planning pour la retenue principale en conséquence.
 - Quelle est la surface maximale que vous pourrez irriguer à l'aide de la retenue principale seulement, tout au long d'une année humide, sans pompageturbinage saisonnier?
 - Quelle est donc la surface supplémentaire A_sup qui n'est irrigable que grâce au pompage-turbinage saisonnier ? (A_sup = A_opt_avecPT A_opt_sansPT).

Discussion:

- d) Le bassin supérieur est-il utile à augmenter la surface irrigable durant l'année ? (3) Connaissez-vous d'autres modes d'opération pour une installation de pompage-turbinage dont l'utilité pour notre aménagement à buts multiples pourrait être plus évidente, comparé au P-T saisonnier étudié ?
- e) Quelles sont les plus grandes incertitudes dans la planification de la gestion de l'aménagement hydroélectrique de la retenue principale pour les prochaines décennies ?
- f) Quels sont les avantages et les inconvénients de l'outil Excel mis à disposition ? (2)

Consignes rapport

- Max. 12 pages de contenu (Sans compter page de titre, tables des matières)
- Suivre la structure des questions et sous-questions de l'énoncé dans les rapports et garder cette structure dans votre table de matières
- Pour chaque sous-question fournir un résumé des résultats / valeurs quantitatives sous forme de tableaux, le cas échéant
- Soumettre des réponses quantitatives ainsi que sous forme graphique
- Prévoir des étiquettes/légendes complètes pour tous les figures (axes, unités, ...) et essayez de combiner les diagrammes, si possible.
- Donner brièvement une justification/explication des résultats obtenus
- Donner les formules nécessaires à la compréhension des calculs effectués (par ex. pondération moyenne, facteur de charge).

Bon courage!

Exercice 4

Dimensionnement et exploitation d'un réservoir à buts multiples pour la régulation des apports en eau

Groupe 21

Noms et prénoms :

Introduction

Considérez l'aménagement hydraulique à buts multiples de Lambda en Afrique de l'Ouest, conçu pour réguler les apports du fleuve Bafing-Sénégal. La retenue est prévue pour alimenter des périmètres d'irrigation et une usine hydroélectrique, contribuer au soutien d'étiage et au soutien de crue (pour les usagers en aval), à l'alimentation local en eau et à la protection contre les crues.

Données de base

Données hydrologiques

Apports en eau à la section du barrage sur le fleuve Bafing [hm³]

Années	oct	nov	dec	jan	fev	mar	avr	mai	jun	jul	aou	sep
Humide	1838	847	478	338	267	218	230	403	824	1419	1096	1159
Moyenne	864	430	243	190	159	137	183	307	413	520	757	972
Sèche	455	318	172	141	116	97	137	171	214	332	265	253

- Evaporation sur la retenue :
 - 6 mm/jour (1^{er} juin au 30 novembre)
 - 4 mm/jour (en dehors)

Niveau d'eau moyen en aval : 153.5 m.s.m.

Données d'exploitation

- Prélèvement pour l'irrigation, pour un périmètre irrigué totale initiale de 25'000 ha : 4 m³/h/ha (décembre à mai),
 - 1 m³/h/ha (juin à novembre)
- Prélèvement pour soutien d'étiage :
 2 m³/s (décembre à mai)
- Prélèvement pour débit écologique :
 1000 l/s (décembre à mai)
 500 l/s en dehors
- Prélèvement pour eau industrielle du site
 10 m³/j

Données du réservoir

Courbe de stockage

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	1.87394691E+02
a1	3,93926359E-02
a2	-1,59149348E-05
a3	4,69258464E-09
a4	-8,18344516E-13
a5	7.28123126E-17
a6	-2.34419186E-21

- Niveau retenue normal (RN):250.00 m.s.m.
- Niveau minimum d'exploitation (Nm) : 225 m.s.m.

Courbe de surface inondé

A [km²] = f(N [m.s.m])	Facteur Polynôme
a0	1.29539757E+05
a1	-3.62014713E+03
a2	4.19337504E+01
a3	-2.57434881E-01
a4	8.82628895E-04
a5	-1.60137399E-06
a6	1.20134414E-09

- Cote des plus hautes eaux (PHE) : 253.00 m.s.m.
- Niveau seuil vidange de fond (hyp.): 188 m.s.m.

Niveau de la fondation :
 Déversements sur seuil libre :
 A partir de RN

Données de la centrale hydroélectrique

- Type de turbine :Rendement globale des turbinesFrancis0.81
- Nombre de turbines

 I Prix moyen d'électricité

 3 (Q1)

 0.12 EUR / <u>kWh</u>

Exercice

Question 1

Tenant compte des apports en eau estimés pour des années hydrologiques humide, moyenne et sèche, admettant un débit d'équipement de l'usine de 240 m³/s divisé par trois groupes et admettant le niveau d'eau au début de l'année à 245 m.s.m., déterminez pour <u>chaque année hydrologique</u>:

- a) Le volume de déversement sans aucun turbinage (1)
- b) Un planning de turbinage mensuel (nombre de turbines utilisées chaque mois, n = [1,2,3]), afin de le mieux possible :
 - réduire les pertes d'eau (déversements et évaporation)
 - maintenir une production d'énergie >0 pendant les mois d'étiage afin d'assurer une puissance garantie minimale en étiage (les mois d'étiage sont définis comme les mois qui ont des apports en eau < 250 hm³/par mois, qui change si l'année est humide, moyenne ou sèche)
 - obtenir un niveau d'eau à la fin de l'année proche à celui du début
- c) Le volume total d'eau déversé et évaporé (1)
- d) L'énergie totale produite pendant les mois d'étiage et la puissance (1) hydroélectrique garantie en moyenne pendant les mois d'étiage
- e) Le facteur de charge des turbines (j/année ou en %) et le revenu en EUR (1)

Discussion étendue :

- f) Discutez vos plannings (Question 1b) d'un point de vue énergétique, sécuritaire, (6) écologique, sociale et économique
- g) Quels seraient les avantages et les inconvénients d'abaisser de 10 m le niveau de la crête du déversoir libre de l'évacuateur de crues (soit le niveau RN), toute en gardant le même Nm (par rapport aux résultats de la Question 1b) ?

Nous allons maintenant considérer un horizon de planification plus étendu puisque vous êtes confronté-e-s à la situation suivante : On vient de passer une année particulièrement sèche (i-1) et le niveau d'eau au début de l'année (i) est au niveau minimum d'exploitation. Développez un planning pour l'année suivante (i), à considérer comme une année moyenne, tout en vous préparant à une autre année sèche (i+1) à la suite, c.-à-d. en visant un niveau d'eau maximal dans la retenue à la fin de l'année moyenne (i).

- h) Déterminez le planning mensuel pour cette année moyenne tout en (1)
 - réduisant les pertes d'eau (déversements et évaporation) ;
 - maintenant une production d'énergie minimale [n>0] pendant les mois d'étiage ;
- i) Comparez ce planning (Question 1h) au planning établi auparavant pour une année
 (2) moyenne (Question 1b) et discutez les différences tenant compte des cas.

(18)

Question 2

Un projet de pompage-turbinage est envisagé, soit la construction d'un bassin supérieur sur une colline surplombant le réservoir principal.

-	Niveau maximal d'exploitation (RN) du
	bassin supérieur : 535 m.s.m.

-	Niveau minima	I : fixé à 473	m.s.m. (Nm)
---	---------------	----------------	-------------

- Débit de turbinage : 7 m³/s

 Débit de pompage : environ 2/3 du débit de turbinage

 1 groupe pompe-turbine Francis avec un rendement globale 0.81 (en mode pompage et en mode turbinage)

Courbe de stockage du bassin supérieur

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	4.69111351E+02
a1	3.73769019E+00
a2	1.29616945E-01
a3	-2.13739797E-02
a4	9.57339860E-04
a5	-1.91433659E-05
a6	1.43825677E-07

Vous êtes confronté-e-s à la situation suivante : Le **niveau d'eau** du bassin supérieur **en début de l'année** est à 507 m.s.m., et il s'agit d'une **année humide**. Vous voulez maintenant utiliser le bassin supérieur pour **faire du pompage-turbinage saisonnier**. Cela vous permettra de stocker un éventuel excédent d'eau arrivant pendant les mois de forts apports pour le mettre à disposition plus tard, pendant les mois de plus faibles apports et d'étiage. Ainsi, il sera possible **d'irriguer une surface agricole plus importante** pour répondre à la demande croissante du domaine de l'agriculture. La surface irriguée totale peut donc être optimisée, en étendant les 25'000 ha initiaux, pour atteindre une aire maximale de :

 $A_{max} = 25'000 \text{ ha} + A_{opt avecPT}$

A_opt_avecPT, **constante durant toute l'année**, désigne la surface maximale que vous pourrez irriguer en plus en utilisant du pompage-turbinage saisonnier. Pour les prélèvements d'irrigation il faut compter 4 m³/h/ha de décembre à mai et 1 m³/h/ha de juin à novembre.

- a) Déterminez un planning de turbinage pour la centrale de la retenue principale et de (2) celle de pompage-turbinage (PT) pour le bassin supérieur
 - afin de maximiser A_opt_avecPT,
 - tout en maintenant une production d'énergie minimal [n> 0] durant l'année
 - en réduisant au minimum les déversements
 - et en respectant le niveau minimum des réservoirs à la fin de chaque mois
- b) Déterminez pour le planning établi

(1)

- la surface totale irriguée A_max
- le total de l'énergie produite pendant l'année
- et la puissance hydroélectrique garantie en moyenne toute l'année

- c) Considérez le cas exceptionnel d'une panne technique vous empêchant d'exploiter (2) le bassin supérieur. Il faudra adapter le planning pour la retenue principale en conséquence.
 - Quelle est la surface maximale que vous pourrez irriguer à l'aide de la retenue principale seulement, tout au long d'une année humide, sans pompageturbinage saisonnier?
 - Quelle est donc la surface supplémentaire A_sup qui n'est irrigable que grâce au pompage-turbinage saisonnier ? (A_sup = A_opt_avecPT A_opt_sansPT).

Discussion:

- d) Le bassin supérieur est-il utile à augmenter la surface irrigable durant l'année ? (3) Connaissez-vous d'autres modes d'opération pour une installation de pompage-turbinage dont l'utilité pour notre aménagement à buts multiples pourrait être plus évidente, comparé au P-T saisonnier étudié ?
- e) Quelles sont les plus grandes incertitudes dans la planification de la gestion de l'aménagement hydroélectrique de la retenue principale pour les prochaines décennies ?
- f) Quels sont les avantages et les inconvénients de l'outil Excel mis à disposition ? (2)

Consignes rapport

- Max. 12 pages de contenu (Sans compter page de titre, tables des matières)
- Suivre la structure des questions et sous-questions de l'énoncé dans les rapports et garder cette structure dans votre table de matières
- Pour chaque sous-question fournir un résumé des résultats / valeurs quantitatives sous forme de tableaux, le cas échéant
- Soumettre des réponses quantitatives ainsi que sous forme graphique
- Prévoir des étiquettes/légendes complètes pour tous les figures (axes, unités, ...) et essayez de combiner les diagrammes, si possible.
- Donner brièvement une justification/explication des résultats obtenus
- Donner les formules nécessaires à la compréhension des calculs effectués (par ex. pondération moyenne, facteur de charge).

Bon courage!

Exercice 4

Dimensionnement et exploitation d'un réservoir à buts multiples pour la régulation des apports en eau

Groupe 22

Noms et prénoms :

Introduction

Considérez l'aménagement hydraulique à buts multiples de Lambda en Afrique de l'Ouest, conçu pour réguler les apports du fleuve Bafing-Sénégal. La retenue est prévue pour alimenter des périmètres d'irrigation et une usine hydroélectrique, contribuer au soutien d'étiage et au soutien de crue (pour les usagers en aval), à l'alimentation local en eau et à la protection contre les crues.

Données de base

Données hydrologiques

Apports en eau à la section du barrage sur le fleuve Bafing [hm³]

Années	oct	nov	dec	jan	fev	mar	avr	mai	jun	jul	aou	sep
Humide	1838	847	478	338	267	218	230	403	824	1419	1096	1159
Moyenne	864	430	243	190	159	137	183	307	413	520	757	972
Sèche	455	318	172	141	116	97	137	171	214	332	265	253

- Evaporation sur la retenue :
 - 6 mm/jour (1^{er} juin au 30 novembre)
 - 4 mm/jour (en dehors)

Niveau d'eau moyen en aval : 153.5 m.s.m.

Données d'exploitation

- Prélèvement pour l'irrigation, pour un périmètre irrigué totale initiale de 25'000 ha : 4 m³/h/ha (décembre à mai),
 1 m³/h/ha (ivin à novembre)
 - 1 m³/h/ha (juin à novembre)
- Prélèvement pour soutien d'étiage :
 2 m³/s (décembre à mai)
- Prélèvement pour débit écologique :
 1000 l/s (décembre à mai)
 500 l/s en dehors
- Prélèvement pour eau industrielle du site
 10 m³/j

Données du réservoir

Courbe de stockage

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	1.87394691E+02
a1	3,93926359E-02
a2	-1,59149348E-05
a3	4,69258464E-09
a4	-8,18344516E-13
a5	7.28123126E-17
a6	-2.34419186E-21

- Niveau retenue normal (RN):250.00 m.s.m.
- Niveau minimum d'exploitation (Nm) : 228 m.s.m.

Courbe de surface inondé

A [km ²] = f(N [m.s.m])	Facteur Polynôme
a0	1.29539757E+05
a1	-3.62014713E+03
a2	4.19337504E+01
a3	-2.57434881E-01
a4	8.82628895E-04
a5	-1.60137399E-06
a6	1.20134414E-09

- Cote des plus hautes eaux (PHE) : 253.00 m.s.m.
- Niveau seuil vidange de fond (hyp.): 188 m.s.m.

Niveau de la fondation :
 Déversements sur seuil libre :
 A partir de RN

Données de la centrale hydroélectrique

- Type de turbine :Rendement globale des turbinesFrancis0.81
- Nombre de turbines

 I Prix moyen d'électricité

 3 (Q1)

 0.12 EUR / <u>kWh</u>

Exercice

Question 1

Tenant compte des apports en eau estimés pour des années hydrologiques humide, moyenne et sèche, admettant un débit d'équipement de l'usine de 240 m³/s divisé par trois groupes et admettant le niveau d'eau au début de l'année à 245 m.s.m., déterminez pour <u>chaque année hydrologique</u>:

- a) Le volume de déversement sans aucun turbinage (1)
- b) Un planning de turbinage mensuel (nombre de turbines utilisées chaque mois, n = [1,2,3]), afin de le mieux possible :
 - réduire les pertes d'eau (déversements et évaporation)
 - maintenir une production d'énergie >0 pendant les mois d'étiage afin d'assurer une puissance garantie minimale en étiage (les mois d'étiage sont définis comme les mois qui ont des apports en eau < 250 hm³/par mois, qui change si l'année est humide, moyenne ou sèche)
 - obtenir un niveau d'eau à la fin de l'année proche à celui du début
- c) Le volume total d'eau déversé et évaporé (1)
- d) L'énergie totale produite pendant les mois d'étiage et la puissance (1) hydroélectrique garantie en moyenne pendant les mois d'étiage
- e) Le facteur de charge des turbines (j/année ou en %) et le revenu en EUR (1)

Discussion étendue :

- f) Discutez vos plannings (Question 1b) d'un point de vue énergétique, sécuritaire, (6) écologique, sociale et économique
- g) Quels seraient les avantages et les inconvénients d'abaisser de 10 m le niveau de la crête du déversoir libre de l'évacuateur de crues (soit le niveau RN), toute en gardant le même Nm (par rapport aux résultats de la Question 1b) ?

Nous allons maintenant considérer un horizon de planification plus étendu puisque vous êtes confronté-e-s à la situation suivante : On vient de passer une année particulièrement sèche (i-1) et le niveau d'eau au début de l'année (i) est au niveau minimum d'exploitation. Développez un planning pour l'année suivante (i), à considérer comme une année moyenne, tout en vous préparant à une autre année sèche (i+1) à la suite, c.-à-d. en visant un niveau d'eau maximal dans la retenue à la fin de l'année moyenne (i).

- h) Déterminez le planning mensuel pour cette année moyenne tout en (1)
 - réduisant les pertes d'eau (déversements et évaporation) ;
 - maintenant une production d'énergie minimale [n>0] pendant les mois d'étiage ;
- i) Comparez ce planning (Question 1h) au planning établi auparavant pour une année
 (2) moyenne (Question 1b) et discutez les différences tenant compte des cas.

(18)

Question 2

Un projet de pompage-turbinage est envisagé, soit la construction d'un bassin supérieur sur une colline surplombant le réservoir principal.

-	Niveau maximal d'exploitation (RN) du
	bassin supérieur : 535 m.s.m.

- Niveau minimal : fixé à 473 m.s.m. (N	۱m)
---	-----

- Débit de turbinage : 7 m³/s

 Débit de pompage : environ 2/3 du débit de turbinage

 1 groupe pompe-turbine Francis avec un rendement globale 0.81 (en mode pompage et en mode turbinage)

Courbe de stockage du bassin supérieur

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	4.69111351E+02
a1	3.73769019E+00
a2	1.29616945E-01
a3	-2.13739797E-02
a4	9.57339860E-04
a5	-1.91433659E-05
a6	1.43825677E-07

Vous êtes confronté-e-s à la situation suivante : Le **niveau d'eau** du bassin supérieur **en début de l'année** est à 512 m.s.m., et il s'agit d'une **année humide**. Vous voulez maintenant utiliser le bassin supérieur pour **faire du pompage-turbinage saisonnier**. Cela vous permettra de stocker un éventuel excédent d'eau arrivant pendant les mois de forts apports pour le mettre à disposition plus tard, pendant les mois de plus faibles apports et d'étiage. Ainsi, il sera possible **d'irriguer une surface agricole plus importante** pour répondre à la demande croissante du domaine de l'agriculture. La surface irriguée totale peut donc être optimisée, en étendant les 25'000 ha initiaux, pour atteindre une aire maximale de :

 $A_{max} = 25'000 \text{ ha} + A_{opt avecPT}$

A_opt_avecPT, **constante durant toute l'année**, désigne la surface maximale que vous pourrez irriguer en plus en utilisant du pompage-turbinage saisonnier. Pour les prélèvements d'irrigation il faut compter 4 m³/h/ha de décembre à mai et 1 m³/h/ha de juin à novembre.

- a) Déterminez un planning de turbinage pour la centrale de la retenue principale et de (2) celle de pompage-turbinage (PT) pour le bassin supérieur
 - afin de maximiser A_opt_avecPT,
 - tout en maintenant une production d'énergie minimal [n> 0] durant l'année
 - en réduisant au minimum les déversements
 - et en respectant le niveau minimum des réservoirs à la fin de chaque mois
- b) Déterminez pour le planning établi

(1)

- la surface totale irriguée A_max
- le total de l'énergie produite pendant l'année
- et la puissance hydroélectrique garantie en moyenne toute l'année

- c) Considérez le cas exceptionnel d'une panne technique vous empêchant d'exploiter (2) le bassin supérieur. Il faudra adapter le planning pour la retenue principale en conséquence.
 - Quelle est la surface maximale que vous pourrez irriguer à l'aide de la retenue principale seulement, tout au long d'une année humide, sans pompageturbinage saisonnier?
 - Quelle est donc la surface supplémentaire A_sup qui n'est irrigable que grâce au pompage-turbinage saisonnier ? (A_sup = A_opt_avecPT A_opt_sansPT).

Discussion:

- d) Le bassin supérieur est-il utile à augmenter la surface irrigable durant l'année ? (3) Connaissez-vous d'autres modes d'opération pour une installation de pompage-turbinage dont l'utilité pour notre aménagement à buts multiples pourrait être plus évidente, comparé au P-T saisonnier étudié ?
- e) Quelles sont les plus grandes incertitudes dans la planification de la gestion de l'aménagement hydroélectrique de la retenue principale pour les prochaines décennies ?
- f) Quels sont les avantages et les inconvénients de l'outil Excel mis à disposition ? (2)

Consignes rapport

- Max. 12 pages de contenu (Sans compter page de titre, tables des matières)
- Suivre la structure des questions et sous-questions de l'énoncé dans les rapports et garder cette structure dans votre table de matières
- Pour chaque sous-question fournir un résumé des résultats / valeurs quantitatives sous forme de tableaux, le cas échéant
- Soumettre des réponses quantitatives ainsi que sous forme graphique
- Prévoir des étiquettes/légendes complètes pour tous les figures (axes, unités, ...) et essayez de combiner les diagrammes, si possible.
- Donner brièvement une justification/explication des résultats obtenus
- Donner les formules nécessaires à la compréhension des calculs effectués (par ex. pondération moyenne, facteur de charge).

Bon courage!

Exercice 4

Dimensionnement et exploitation d'un réservoir à buts multiples pour la régulation des apports en eau

Groupe 23

Noms et prénoms :

Introduction

Considérez l'aménagement hydraulique à buts multiples de Lambda en Afrique de l'Ouest, conçu pour réguler les apports du fleuve Bafing-Sénégal. La retenue est prévue pour alimenter des périmètres d'irrigation et une usine hydroélectrique, contribuer au soutien d'étiage et au soutien de crue (pour les usagers en aval), à l'alimentation local en eau et à la protection contre les crues.

Données de base

Données hydrologiques

Apports en eau à la section du barrage sur le fleuve Bafing [hm³]

Années	oct	nov	dec	jan	fev	mar	avr	mai	jun	jul	aou	sep
Humide	1838	847	478	338	267	218	230	403	824	1419	1096	1159
Moyenne	864	430	243	190	159	137	183	307	413	520	757	972
Sèche	455	318	172	141	116	97	137	171	214	332	265	253

• Evaporation sur la retenue :

6 mm/jour (1^{er} juin au 30 novembre)

4 mm/jour (en dehors)

Niveau d'eau moyen en aval :

153.5 m.s.m.

Données d'exploitation

- Prélèvement pour l'irrigation, pour un périmètre irrigué totale initiale de 25'000 ha : 4 m³/h/ha (décembre à mai), 1 m³/h/ha (juin à novembre)
- Prélèvement pour soutien d'étiage :
 2 m³/s (décembre à mai)
- Prélèvement pour débit écologique :
 1000 l/s (décembre à mai)
 500 l/s en dehors
- Prélèvement pour eau industrielle du site
 10 m³/j

Données du réservoir

Courbe de stockage

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	1.87394691E+02
a1	3,93926359E-02
a2	-1,59149348E-05
a3	4,69258464E-09
a4	-8,18344516E-13
a5	7.28123126E-17
a6	-2.34419186E-21

- Niveau retenue normal (RN):250.00 m.s.m.
- Niveau minimum d'exploitation (Nm) : 227 m.s.m.

Courbe de surface inondé

A [km ²] = f(N [m.s.m])	Facteur Polynôme
a0	1.29539757E+05
a1	-3.62014713E+03
a2	4.19337504E+01
a3	-2.57434881E-01
a4	8.82628895E-04
a5	-1.60137399E-06
a6	1.20134414E-09

- Cote des plus hautes eaux (PHE) : 253.00 m.s.m.
- Niveau seuil vidange de fond (hyp.): 188 m.s.m.

Niveau de la fondation :
 Déversements sur seuil libre :
 A partir de RN

Données de la centrale hydroélectrique

- Type de turbine : Rendement globale des turbinesFrancis 0.81
- Nombre de turbines
 Prix moyen d'électricité
 3 (Q1)

 0.12 EUR / <u>kWh</u>

Exercice

Question 1

Tenant compte des apports en eau estimés pour des années hydrologiques humide, moyenne et sèche, admettant un débit d'équipement de l'usine de 255 m³/s divisé par trois groupes et admettant le niveau d'eau au début de l'année à 245 m.s.m., déterminez pour <u>chaque année hydrologique</u>:

- a) Le volume de déversement sans aucun turbinage (1)
- b) Un planning de turbinage mensuel (nombre de turbines utilisées chaque mois, n = [1,2,3]), afin de le mieux possible :
 - réduire les pertes d'eau (déversements et évaporation)
 - maintenir une production d'énergie >0 pendant les mois d'étiage afin d'assurer une puissance garantie minimale en étiage (les mois d'étiage sont définis comme les mois qui ont des apports en eau < 250 hm³/par mois, qui change si l'année est humide, moyenne ou sèche)
 - obtenir un niveau d'eau à la fin de l'année proche à celui du début
- c) Le volume total d'eau déversé et évaporé (1)
- d) L'énergie totale produite pendant les mois d'étiage et la puissance (1) hydroélectrique garantie en moyenne pendant les mois d'étiage
- e) Le facteur de charge des turbines (j/année ou en %) et le revenu en EUR (1)

Discussion étendue :

- f) Discutez vos plannings (Question 1b) d'un point de vue énergétique, sécuritaire, (6) écologique, sociale et économique
- g) Quels seraient les avantages et les inconvénients d'abaisser de 10 m le niveau de la crête du déversoir libre de l'évacuateur de crues (soit le niveau RN), toute en gardant le même Nm (par rapport aux résultats de la Question 1b) ?

Nous allons maintenant considérer un horizon de planification plus étendu puisque vous êtes confronté-e-s à la situation suivante : On vient de passer une année particulièrement sèche (i-1) et le niveau d'eau au début de l'année (i) est au niveau minimum d'exploitation. Développez un planning pour l'année suivante (i), à considérer comme une année moyenne, tout en vous préparant à une autre année sèche (i+1) à la suite, c.-à-d. en visant un niveau d'eau maximal dans la retenue à la fin de l'année moyenne (i).

- h) Déterminez le planning mensuel pour cette année moyenne tout en (1)
 - réduisant les pertes d'eau (déversements et évaporation) ;
 - maintenant une production d'énergie minimale [n>0] pendant les mois d'étiage ;
- i) Comparez ce planning (Question 1h) au planning établi auparavant pour une année
 (2) moyenne (Question 1b) et discutez les différences tenant compte des cas.

(18)

Question 2

Un projet de pompage-turbinage est envisagé, soit la construction d'un bassin supérieur sur une colline surplombant le réservoir principal.

-	Niveau maximal d'exploitation (RN) du
	bassin supérieur : 525 m.s.m.

-	Niveau	minimal	: fixé	à 473	m.s.m.	(Nm)
---	--------	---------	--------	-------	--------	------

- Débit de turbinage : 7 m³/s

 Débit de pompage : environ 2/3 du débit de turbinage

 1 groupe pompe-turbine Francis avec un rendement globale 0.81 (en mode pompage et en mode turbinage)

Courbe de stockage du bassin supérieur

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	4.69111351E+02
a1	3.73769019E+00
a2	1.29616945E-01
a3	-2.13739797E-02
a4	9.57339860E-04
a5	-1.91433659E-05
a6	1.43825677E-07

Vous êtes confronté-e-s à la situation suivante : Le **niveau d'eau** du bassin supérieur **en début de l'année** est à 511 m.s.m., et il s'agit d'une **année humide**. Vous voulez maintenant utiliser le bassin supérieur pour **faire du pompage-turbinage saisonnier**. Cela vous permettra de stocker un éventuel excédent d'eau arrivant pendant les mois de forts apports pour le mettre à disposition plus tard, pendant les mois de plus faibles apports et d'étiage. Ainsi, il sera possible **d'irriguer une surface agricole plus importante** pour répondre à la demande croissante du domaine de l'agriculture. La surface irriguée totale peut donc être optimisée, en étendant les 25'000 ha initiaux, pour atteindre une aire maximale de :

 $A_{max} = 25'000 \text{ ha} + A_{opt avecPT}$

A_opt_avecPT, **constante durant toute l'année**, désigne la surface maximale que vous pourrez irriguer en plus en utilisant du pompage-turbinage saisonnier. Pour les prélèvements d'irrigation il faut compter 4 m³/h/ha de décembre à mai et 1 m³/h/ha de juin à novembre.

- a) Déterminez un planning de turbinage pour la centrale de la retenue principale et de (2) celle de pompage-turbinage (PT) pour le bassin supérieur
 - afin de maximiser A_opt_avecPT,
 - tout en maintenant une production d'énergie minimal [n> 0] durant l'année
 - en réduisant au minimum les déversements
 - et en respectant le niveau minimum des réservoirs à la fin de chaque mois
- b) Déterminez pour le planning établi

(1)

- la surface totale irriguée A_max
- le total de l'énergie produite pendant l'année
- et la puissance hydroélectrique garantie en moyenne toute l'année

- c) Considérez le cas exceptionnel d'une panne technique vous empêchant d'exploiter (2) le bassin supérieur. Il faudra adapter le planning pour la retenue principale en conséquence.
 - Quelle est la surface maximale que vous pourrez irriguer à l'aide de la retenue principale seulement, tout au long d'une année humide, sans pompageturbinage saisonnier?
 - Quelle est donc la surface supplémentaire A_sup qui n'est irrigable que grâce au pompage-turbinage saisonnier ? (A_sup = A_opt_avecPT A_opt_sansPT).

Discussion:

- d) Le bassin supérieur est-il utile à augmenter la surface irrigable durant l'année ? (3) Connaissez-vous d'autres modes d'opération pour une installation de pompage-turbinage dont l'utilité pour notre aménagement à buts multiples pourrait être plus évidente, comparé au P-T saisonnier étudié ?
- e) Quelles sont les plus grandes incertitudes dans la planification de la gestion de l'aménagement hydroélectrique de la retenue principale pour les prochaines décennies ?
- f) Quels sont les avantages et les inconvénients de l'outil Excel mis à disposition ? (2)

Consignes rapport

- Max. 12 pages de contenu (Sans compter page de titre, tables des matières)
- Suivre la structure des questions et sous-questions de l'énoncé dans les rapports et garder cette structure dans votre table de matières
- Pour chaque sous-question fournir un résumé des résultats / valeurs quantitatives sous forme de tableaux, le cas échéant
- Soumettre des réponses quantitatives ainsi que sous forme graphique
- Prévoir des étiquettes/légendes complètes pour tous les figures (axes, unités, ...) et essayez de combiner les diagrammes, si possible.
- Donner brièvement une justification/explication des résultats obtenus
- Donner les formules nécessaires à la compréhension des calculs effectués (par ex. pondération moyenne, facteur de charge).

Bon courage!

Exercice 4

Dimensionnement et exploitation d'un réservoir à buts multiples pour la régulation des apports en eau

Groupe 24

Noms et prénoms :

Introduction

Considérez l'aménagement hydraulique à buts multiples de Lambda en Afrique de l'Ouest, conçu pour réguler les apports du fleuve Bafing-Sénégal. La retenue est prévue pour alimenter des périmètres d'irrigation et une usine hydroélectrique, contribuer au soutien d'étiage et au soutien de crue (pour les usagers en aval), à l'alimentation local en eau et à la protection contre les crues.

Données de base

Données hydrologiques

Apports en eau à la section du barrage sur le fleuve Bafing [hm³]

Années	oct	nov	dec	jan	fev	mar	avr	mai	jun	jul	aou	sep
Humide	1838	847	478	338	267	218	230	403	824	1419	1096	1159
Moyenne	864	430	243	190	159	137	183	307	413	520	757	972
Sèche	455	318	172	141	116	97	137	171	214	332	265	253

■ Evaporation sur la retenue :

6 mm/jour (1^{er} juin au 30 novembre)

4 mm/jour (en dehors)

Niveau d'eau moyen en aval :

153.5 m.s.m.

Données d'exploitation

- Prélèvement pour l'irrigation, pour un périmètre irrigué totale initiale de 25'000 ha : 4 m³/h/ha (décembre à mai),
 1 m³/h/ha (ivin à novembre)
 - 1 m³/h/ha (juin à novembre)
- Prélèvement pour soutien d'étiage :
 2 m³/s (décembre à mai)
- Prélèvement pour débit écologique :
 1000 l/s (décembre à mai)
 500 l/s en dehors
- Prélèvement pour eau industrielle du site
 10 m³/j

Données du réservoir

Courbe de stockage

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	1.87394691E+02
a1	3,93926359E-02
a2	-1,59149348E-05
a3	4,69258464E-09
a4	-8,18344516E-13
a5	7.28123126E-17
a6	-2.34419186E-21

- Niveau retenue normal (RN):250.00 m.s.m.
- Niveau minimum d'exploitation (Nm) : 224 m.s.m.

Courbe de surface inondé

A [km²] = f(N [m.s.m])	Facteur Polynôme
a0	1.29539757E+05
a1	-3.62014713E+03
a2	4.19337504E+01
a3	-2.57434881E-01
a4	8.82628895E-04
a5	-1.60137399E-06
a6	1.20134414E-09

- Cote des plus hautes eaux (PHE) : 253.00 m.s.m.
- Niveau seuil vidange de fond (hyp.): 188 m.s.m.

Niveau de la fondation :
 Déversements sur seuil libre :
 A partir de RN

Données de la centrale hydroélectrique

- Type de turbine :Rendement globale des turbinesFrancis0.81
- Nombre de turbines

 I Prix moyen d'électricité

 3 (Q1)

 0.12 EUR / <u>kWh</u>

Exercice

Question 1

Tenant compte des apports en eau estimés pour des années hydrologiques humide, moyenne et sèche, admettant un débit d'équipement de l'usine de 240 m³/s divisé par trois groupes et admettant le niveau d'eau au début de l'année à 245 m.s.m., déterminez pour <u>chaque année hydrologique</u>:

- a) Le volume de déversement sans aucun turbinage (1)
- b) Un planning de turbinage mensuel (nombre de turbines utilisées chaque mois, n = [1,2,3]), afin de le mieux possible :
 - réduire les pertes d'eau (déversements et évaporation)
 - maintenir une production d'énergie >0 pendant les mois d'étiage afin d'assurer une puissance garantie minimale en étiage (les mois d'étiage sont définis comme les mois qui ont des apports en eau < 250 hm³/par mois, qui change si l'année est humide, moyenne ou sèche)
 - obtenir un niveau d'eau à la fin de l'année proche à celui du début
- c) Le volume total d'eau déversé et évaporé (1)
- d) L'énergie totale produite pendant les mois d'étiage et la puissance (1) hydroélectrique garantie en moyenne pendant les mois d'étiage
- e) Le facteur de charge des turbines (j/année ou en %) et le revenu en EUR (1)

Discussion étendue :

- f) Discutez vos plannings (Question 1b) d'un point de vue énergétique, sécuritaire, (6) écologique, sociale et économique
- g) Quels seraient les avantages et les inconvénients d'abaisser de 10 m le niveau de la crête du déversoir libre de l'évacuateur de crues (soit le niveau RN), toute en gardant le même Nm (par rapport aux résultats de la Question 1b) ?

Nous allons maintenant considérer un horizon de planification plus étendu puisque vous êtes confronté-e-s à la situation suivante : On vient de passer une année particulièrement sèche (i-1) et le niveau d'eau au début de l'année (i) est au niveau minimum d'exploitation. Développez un planning pour l'année suivante (i), à considérer comme une année moyenne, tout en vous préparant à une autre année sèche (i+1) à la suite, c.-à-d. en visant un niveau d'eau maximal dans la retenue à la fin de l'année moyenne (i).

- h) Déterminez le planning mensuel pour cette année moyenne tout en (1)
 - réduisant les pertes d'eau (déversements et évaporation) ;
 - maintenant une production d'énergie minimale [n>0] pendant les mois d'étiage ;
- i) Comparez ce planning (Question 1h) au planning établi auparavant pour une année
 (2) moyenne (Question 1b) et discutez les différences tenant compte des cas.

(18)

Question 2

Un projet de pompage-turbinage est envisagé, soit la construction d'un bassin supérieur sur une colline surplombant le réservoir principal.

-	Niveau maximal d'exploitation (RN) du
	bassin supérieur : 525 m.s.m.

-	Niveau minimal : fixé à 473 m.s.m. (Nm)
	_

- Débit de turbinage : 7 m³/s
- Débit de pompage : environ 2/3 du débit de turbinage
- 1 groupe pompe-turbine Francis avec un rendement globale 0.81 (en mode pompage et en mode turbinage)

Courbe de stockage du bassin supérieur

N [m.s.m] = f(V [hm³])	Facteur Polynôme
a0	4.69111351E+02
a1	3.73769019E+00
a2	1.29616945E-01
a3	-2.13739797E-02
a4	9.57339860E-04
a5	-1.91433659E-05
a6	1.43825677E-07

Vous êtes confronté-e-s à la situation suivante : Le **niveau d'eau** du bassin supérieur **en début de l'année** est à 510 m.s.m., et il s'agit d'une **année humide**. Vous voulez maintenant utiliser le bassin supérieur pour **faire du pompage-turbinage saisonnier**. Cela vous permettra de stocker un éventuel excédent d'eau arrivant pendant les mois de forts apports pour le mettre à disposition plus tard, pendant les mois de plus faibles apports et d'étiage. Ainsi, il sera possible **d'irriguer une surface agricole plus importante** pour répondre à la demande croissante du domaine de l'agriculture. La surface irriguée totale peut donc être optimisée, en étendant les 25'000 ha initiaux, pour atteindre une aire maximale de :

 $A_{max} = 25'000 \text{ ha} + A_{opt avecPT}$

A_opt_avecPT, **constante durant toute l'année**, désigne la surface maximale que vous pourrez irriguer en plus en utilisant du pompage-turbinage saisonnier. Pour les prélèvements d'irrigation il faut compter 4 m³/h/ha de décembre à mai et 1 m³/h/ha de juin à novembre.

- a) Déterminez un planning de turbinage pour la centrale de la retenue principale et de celle de pompage-turbinage (PT) pour le bassin supérieur
 - afin de maximiser A_opt_avecPT,
 - tout en maintenant une production d'énergie minimal [n> 0] durant l'année
 - en réduisant au minimum les déversements
 - et en respectant le niveau minimum des réservoirs à la fin de chaque mois
- b) Déterminez pour le planning établi

(1)

- la surface totale irriguée A_max
- le total de l'énergie produite pendant l'année
- et la puissance hydroélectrique garantie en moyenne toute l'année

- c) Considérez le cas exceptionnel d'une panne technique vous empêchant d'exploiter (2) le bassin supérieur. Il faudra adapter le planning pour la retenue principale en conséquence.
 - Quelle est la surface maximale que vous pourrez irriguer à l'aide de la retenue principale seulement, tout au long d'une année humide, sans pompageturbinage saisonnier?
 - Quelle est donc la surface supplémentaire A_sup qui n'est irrigable que grâce au pompage-turbinage saisonnier ? (A_sup = A_opt_avecPT A_opt_sansPT).

Discussion:

- d) Le bassin supérieur est-il utile à augmenter la surface irrigable durant l'année ? (3) Connaissez-vous d'autres modes d'opération pour une installation de pompage-turbinage dont l'utilité pour notre aménagement à buts multiples pourrait être plus évidente, comparé au P-T saisonnier étudié ?
- e) Quelles sont les plus grandes incertitudes dans la planification de la gestion de l'aménagement hydroélectrique de la retenue principale pour les prochaines décennies ?
- f) Quels sont les avantages et les inconvénients de l'outil Excel mis à disposition ? (2)

Consignes rapport

- Max. 12 pages de contenu (Sans compter page de titre, tables des matières)
- Suivre la structure des questions et sous-questions de l'énoncé dans les rapports et garder cette structure dans votre table de matières
- Pour chaque sous-question fournir un résumé des résultats / valeurs quantitatives sous forme de tableaux, le cas échéant
- Soumettre des réponses quantitatives ainsi que sous forme graphique
- Prévoir des étiquettes/légendes complètes pour tous les figures (axes, unités, ...) et essayez de combiner les diagrammes, si possible.
- Donner brièvement une justification/explication des résultats obtenus
- Donner les formules nécessaires à la compréhension des calculs effectués (par ex. pondération moyenne, facteur de charge).

Bon courage!